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Small-scale instabilities in inertia-gravity waves

Abhiram D S∗†, Manikandan Mathur†, Yohei Onuki‡‡,

Figure 1: Non-dimensional growth rate (σ) as a function of ϕ0 (deg.) and θ0 (deg.) for ω/f = 1.5, 2.1, 5
(column-wise) and A = 0.1, 1, 10 (row-wise). All the plots correspond to ω/N = 0.025. In the first row, all
growth rates are very negligible everywhere outside the range shown.

Semi-diurnal internal tides are a significant part of internal waves in the ocean. While several dissipation
mechanisms have been proposed for internal tides, the relative importance of each of them in the ocean is not
fully resolved. Linear instability is one potential pathway towards dissipation for inertia-gravity waves, which are
internal waves that are influenced by both stratification and rotation. Here, we perform a linear stability analysis
of a finite-amplitude plane inertia-gravity wave by considering the inviscid evolution of three-dimensional (3-D),
small-amplitude, short-wavelength perturbations. Characterizing the base flow plane inertia-gravity wave by
its non-dimensional amplitude A and the ratio of frequency to background rotation (ω/f), the local stability
equations are solved over the entire range of perturbation wave vector orientations, which are denoted by
θ0 (angle made by the perturbation wave vector with the inertia-gravity wave plane) and ϕ0 (angle made

∗Corresponding author: ae20d751@smail.iitm.ac.in
†Geophysical flows lab, Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India, 600036
‡Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
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by the projection of perturbation wave vector in the inertia-gravity wave plane with the horizontal). To be
representative of internal tides in the ocean, ω/N is held fixed at 0.025 for our entire study, where N is the
Brunt Väisälä frequency associated with the uniform stratification.

Figure 1 shows the growth rate distribution on the (ϕ0, θ0) plane for three different amplitudes (A =
0.1, 1, 10) and three choices of Coriolis frequencies (ω/f = 1.5, 2.1, 5. For A = 0.1, perturbations are stable
in most part of the (ϕ0, θ0) plane, except for a small region around (ϕ0, θ0) = (90◦, 0◦), which corresponds
to planar (in the plane of the base flow inertia-gravity wave) wave vectors that are aligned with the direction
of background rotation. At A = 1 (middle row of figure 1), non-zero growth rates are observed over much
wider regions on the ϕ0 − θ0 plane compared to the case of A = 0.1. Specifically, several instability bands
that span over (ϕ0, θ0) = [0, 180]× [−90, 90], interspersed with stable regions in between, are observed for all
three values of ω/f (figures 1 d-f). Finally, upon increasing A to 10, finite growth rates are observed almost
entirely over the ϕ0 − θ0 plane, with significant fractions of the plane showing growth rates comparable to
the maximum growth rate. The instabilities at small A are found to be associated with triadic resonance
instability of various orders by identifying the frequencies present in the unstable perturbations. For ω/f ≥ 2
and ω/f < 2, the dominant instability is two-dimensional (2-D) and its growth rate is proportional to A and
A2, respectively at sufficiently small A, associated with parametric subharmonic instability (n = 1 TRI) and
n = 2 TRI. Above A ≈ 1, the maximum growth rate at a given A occurs at very large ω/f , suggesting that
the internal gravity wave limit of ω/f → ∞ is most unstable at sufficiently large A. As A is increased, for
small ω/f ≈ 1, the dominant instability becomes 3-D above A ≈ 10,whereas for ω/f > 6, the dominant
instability becomes 3-D above A 1.3.

To quantify the roles of shear and buoyancy gradient in the evolution of a given perturbation, we perform
an energy budget analysis. For large A, shear and static instabilities are the dominant instabilities. The
transition from 2-D PSI to static instability is reasonably captured by the threshold amplitude below which
the vertical density gradient is statically stable throughout the inertia-gravity wave period. The transition to
shear instability is captured by a criterion based on Richardson number.
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Suspension Rheology and Routes to Turbulence in
Taylor-Couette Flow

Meheboob Alam∗†, M. Ghosh†,

May 18, 2025

Abstract:

In the first part of my talk, the rheology of particulate suspensions of non-colloidal particles will be briefly
reviewed, focussing on the Stokesian regime. This is followed by experimental results on the role of inertial
particles on pattern transition routes to turbulence (Taylor , 1923; Coles , 1965; Andereck et al. , 1986; Iooss
, 1994; Grossmann et al., 2016) in a Taylor-Couette (TC) setup. All experiments have been conducted with
neutrally-buoyant suspensions of rigid, non-colloidal particles up-to a particle volume fraction of φ = 0.3. The
TC cell, having a radius ratio of η = ri/ro ≈ 0.89 and an aspect ratio of Γ = h/(ro − ri) ≈ 8.5, is mounted
on a Rheometer which is equipped with two independent motors that are connected to the inner and outer
cylinders, with the end-caps being allowed to rotate with the outer cylinder. The present setup facilitates the
exploration of both co- (Ghosh and Alam , 2024) and counter-rotation (Singh et al. , 2022) regimes, thus
going beyond recent experiments on inertial suspensions (Majji et al. , 2018; Ramesh et al. , 2019; Dash et al. ,
2020; Ramesh & Alam , 2020; Moazzen et al. , 2022) that considered pure inner cylinder rotation (i.e., ωi 6= 0
and ωo = 0). For each φ ≥ 0, the experiments are carried out by increasing/decreasing the angular speeds
of two cylinders via quasi-steady ramping protocols at fixed values of the rotation ratio (Ω = ωo/ωi). The
explored range of Ω spans across cyclonic and anti-cyclonic regimes for which the Coriolis/rotation number is
negative (i.e. RΩ = τsh/τm = (1− η)(1 + Ω/η)/(1−Ω) < 0, the ratio between the shear time scale and the
mean rotation time scale (Dubrulle et al. , 2005)) and positive (RΩ > 0, i.e. Ω > −η) , respectively. The
video images and the measured torque (Alam & Ghosh , 2023) on the inner cylinder have been analysed to
gain insights into the spectral routes that run through various transitional flow states, culminating into two
distinct turbulent states at large values of the shear Reynolds number Res(φ,Ω), depending on the value of
the rotation ratio Ω and the particle loading φ.

It is shown that the laminar flow (i.e. the circular Couette flow, CCF, with axial-boundary-induced Ekman
rolls) makes a direct transition to a chaotic state at large enough counter-rotation (Ω = −1.5), and the final
bifurcating state represents a featureless turbulent (TUR) state, devoid of large-scale structures. The chaotic
state, called NIS (non-propagating interpenetrating spirals), is characterized by a power-law decay P(f) ∼ f−β
of the power spectra of the scattered light intensity, and the vanishing of its exponent β(Res) → 0 with
increasing shear Reynolds number Res(φ), signifying the broadband nature of P(f), is tied to the onset of
TUR. The origin of TUR is tied to a non-axisymmetric primary bifurcation, leading to spiral vortex flows
(SVF, an axially propagating and azimuthally rotating helical mode) at Ω = −η which undergoes a sequence
ot bifurcations CCF→SVF→ISV→NIS→TUR, followed by (i) a quasi-periodic state (ISV, interpenetrating
spiral vortices), (ii) a chaotic state (NIS) and (iii) a featureless turbulent state (TUR). With further decreasing
the rotation ratio Ω < −η, the SVF and ISV states disappear progressively, resulting in a direct transition to
to chaos and turbulence (CCF→NIS→TUR) at large enough values of Ω� −η (Ghosh and Alam , 2025b).

In the anti-cyclonic regime (RΩ > 0, or, Ω > −η), however, the Ruelle-Takens-like (Ruelle & Takens ,
1971) bifurcation scenario holds, leading to turbulent Taylor vortices (TTV) which is characterized by large-
scale Taylor-like stationary rolls in the background of small-scale structures (Coles , 1965; Andereck et al. ,
1986). It is shown that the transition pathway at Ω > −η, leading to the onset of chaos (i.e. the chaotic
wavy vortices, CWV), can be mediated by vortex splitting and merging (VSM) events (Ghosh and Alam ,
2025a). The onset of VSM is found to coincide with the transition of a quasi-periodic state (modulated
wavy vortices, MWV, characterized by at least one incommensurate frequency) to CWV that finally gives
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birth to TTV via an intermediary state of turbulent wavy vortices (TWV). The VSM events are shown to
be temporally uncorrelated, with a multi-modal skewed probability density function for the inter-event time
interval, implying that the VSM-induced chaos is stochastic. The phase diagrams of patterns in (Res(φ),Ω)-
and (Res(φ), RΩ)-planes are compared with their particle-free (φ = 0) counterpart to infer the crucial role of
inertial particles (Bagnold , 1954; Ho & Leal , 1974; Baroudi et al. , 2020) on transition pathways towards
TUR and TTV.
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Instabilities and Pattern Selection in Inclined Binary
Convection

A. Alonso∗†, I. Mercader †, O. Batiste †, A. Meseguer †

Abstract:

In this work, we numerically investigate pattern formation in binary fluid convection within slightly inclined
cylindrical cells heated from below. Our focus is on the Soret regime for mixtures with a positive Soret
coefficient.

We begin by presenting an overview of the stable flow patterns observed in moderately sized cells with
aspect ratio around 5 (Γ ≈ 5). The emerging patterns are diverse and dynamically rich, with the observed
dynamics showing high sensitive to small variations in Γ. By varying the Rayleigh number and smoothly
adjusting its increments, we capture a wide range of spatio-temporal behaviours (see Figure 1 and Figure 2 for
an example with a Γ = 5.4 cell). These include large-scale shear flows (LSF) and several types of superhighway
convection (SHC) patterns (oscillatory plumes travelling in adjacent lanes along the direction of inclination).
Beyond steady and periodic regimes, we identify modulated SHC patterns, including quasiperiodic and chaotic
states. These flows exhibit complex temporal dynamics while preserving the fundamental SHC structure. The
associated bifurcation scenarios are intricate and strongly case-dependent (Alonso et al., 2025).

To gain deeper insight into the transition mechanisms and reduce spatio-temporal complexity, we extend
our analysis to smaller cells with aspect ratio 3 (Γ = 3.0). This configuration is expected to yield more
structured and robust bifurcation sequences, providing a clearer understanding of the instabilities that govern
binary convection in inclined cylindrical geometries.

We employ in-house numerical tools to solve the Navier-Stokes equations for binary mixtures in cylindrical
domains. Most results are obtained with a three-dimensional time-stepping spectral code (Mercader et al.,
2010) that captures stable patterns. For the smaller aspect ratio cells, we additionally use a Newton-Krylov
solver to compute steady solutions and trace the underlying branches of stable and unstable states that may
explain the complex dybnics observed in the Soret regime.

Figures and References:

(a) (b)

Figure 1: (a) Averaged Nusselt number and (b) temporal frequencies of the patterns as a function of the
Rayleigh number Ra for different 9 and 10-lane SHC patterns arising in a Γ = 5.4 cell.
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(a) (b)

Figure 2: Kinetic energy as a function of nondimensional time for (a) 9-lane and (b) 10-lane periodic and
modulated SHC-like states obtained for different values of Ra in a Γ = 5.4 cell.
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Forced flow reversal in ferrofluidic Couette flow

Sebastian A. Altmeyer∗ †,

Time-dependent boundary conditions are very common in natural and industrial flows and by far no
exception. An example of this is the movement of a magnetic fluid as ferrofluids Rosensweig (1985) forced
due to temporal modulations. Using a modified Niklas approximation (Niklas (1987),Altmeyer (2021)), the
effect of frequency modulation on non-linear flow dynamics and appearing flow pattern reversal is analyzed.
Flow structures of particular interest in the present work are wavy Taylor vortex flows (WVF2, with dominant
azimuthal wavenumber m = 2) Wereley and Lueptow (1998); Altmeyer (2024) in the counter-rotating
Taylor-Couette system Taylor (1923), which was subjected to a spatially homogeneous magnetic field subject
to an alternating modulation (H = [HS +HM sin(ΩHt)]e).

t1 t3 t4t2(a)

ω < 0

(c) (d)(b)

ω > 0 ω < 0 ω > 0

Figure 1: Flow vizualizations of the temporal flow pat-
tern reversal for WVF2 (5V, k = 4.21) with sz,S =
0.2 = sz,M and ΩH = 5 for retrograde (ω < 0) and
prograde (ω > 0). Top row: isosurfaces of azimuthal
vorticity η = ±200 [red (yellow) color indicates posi-
tive (negative) vorticity]. Middle row: radial velocity
u(θ, z) on an unrolled cylindrical surface in the annulus
at mid-gap [red (yellow) color indicates in (out) flow].
Bottom row: contours of azimuthal velocity compo-
nent v in the (r, θ) plane at mid-height (viewed from
the bottom) [red (yellow) color indicates positive (neg-
ative) velocity].

In the absence of a magnetic field, all WVF2 states move in the opposite direction to the rotation of the
inner cylinder, they are retrograde. However, when strength or frequency of the alternating magnetic field
increases, the motion direction of the flow pattern changes (Fig. 1). Thus, the alternating field provides a
precise and controllable key parameter for triggering the system response and controlling the flow. Aside, we
also observed intermittent behavior when one solution became unstable, leading to random transitions in both,
the transition time and towards the different final solutions.

We’ve studied wave propagation reversal for both static and alternating magnetic fields. In the absence of
a magnetic field, the WVF2 moves in a retrograde manner relative to the inner cylinder rotation. However,
when we increase the strength of a static or alternating magnetic field, the retrograde wave propagation slows
down and eventually becomes zero. At this point, the flow is represented by a standing wave and then starts
moving in the opposite direction, becoming prograde. The reversal of wave propagation coincides with the
stabilization of the basic state due to increasing magnetic field strength, both for static and alternating fields.

The present work indicates the impact of complex fluids under external driving forces. Our findings suggest
that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner,
which may have applications in the development of modern fluid devices in laboratory experiments.
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Bifurcations in spherical Couette flow

Ananthu J P∗†, Manjul Sharma‡, A. Sameen‡, Vinod Narayanan†,

1. Introduction
Spherical Couette flow, the motion of fluid in the annular space between two concentric spheres with
one or both rotating, serves as a fundamental model in fluid dynamics, offering insights into geophysical
and astrophysical phenomena (1). This study focuses on a narrow gap ratio (β = 0.24) with only the
inner sphere rotating, examining how initial conditions influence flow bifurcations(4). Previous research
has highlighted the role of gap ratio (β) and Reynolds number (Re) in driving flow transitions, often
involving Taylor vortices, spiral instabilities, and chaotic states (2). Here, we use numerical simulations
to map bifurcation branches, analyze flow topologies, and explore phase space dynamics, providing a
comprehensive understanding of flow behavior in this regime.

Figure 1: Bifurcation diagram showing the three branches (Axisymmetric, TWI, EI) and hysteresis in the
⟨ur⟩ϕ-Re plane.

2. Methodology
The incompressible Navier-Stokes equations in spherical coordinates are solved using the Dedalus frame-
work, a Python-based pseudo-spectral method employing Chebyshev polynomials in the radial direction
and Jacobi polynomials for spherical bases (3). The Reynolds number is defined as Re = R2

iωi/ν, where
Ri is the inner sphere radius, ωi is its angular velocity, and ν is the kinematic viscosity. The gap ratio is
fixed at β = (Ro −Ri)/Ri = 0.24. Simulations are conducted over Re = 400–6300, with three sets of
initial conditions to capture different bifurcation branches: The Axisymmetric Branch is initialized with
the velocity field from the previous lower Re simulation, the Traveling Wave Instability (TWI) Branch
starts with zero initial field and perturbation, and the Equatorial Instability (EI) Branch is initiated
with an artificial perturbation. A grid independence study ensures numerical accuracy, and results are
validated against experimental and numerical studies, confirming the reliability of the method.
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3. Results and Discussion
The bifurcation diagram, plotted in the ⟨ur⟩ϕ-Re plane (see Figure 1), reveals three distinct branches:

1. Axisymmetric Branch : This branch remains steady and axisymmetric up to Re = 6250, with
a sub-critical base flow featuring circular cells in each hemisphere at low Re. Pinching at the
equator occurs at Re ≈ 430, consistent with theoretical predictions. At Re = 6250, the flow
becomes weakly periodic, exhibiting a limit-cycle in phase space, with a dominant equatorial jet
and slow-moving polar jets at high Re.

(a) Contours of azimuthal vorticity showing spiral wavy
flow at Re = 4500 on branch II. (a) Side view, (b) top
view, and (c) iso-surface of uϕ = −0.0289. (d) Contours
of Azimuthal vorticity ξ(ϕ, t) at r = (Ri +Ro)/2, θ ≈ 0
is plotted along ϕ at Re = 4500. Yellow dashed lines
show the direction of propagation of the wave.

(b) Two-cell flow on the EI branch shown by contours of
azimuthal vorticity from (a) to (d) for Reynolds numbers
4500, 4750, 5750, and 6250 respectively. Figures (e) to
(h) show vortex lines in an r−−θ plane for the respective
Reynolds numbers.

2. Traveling Wave Instability (TWI) Branch : Emerging at Re ≈ 4500, this branch is characterized
by spiral instabilities near the poles (wavenumber k = 7) and equatorial instabilities(see Figure 2a).
A notable direction-reversing bifurcation occurs between Re = 4700 and 5340, with the spiral wave
propagation direction reversing. At higher Re, multiple wavenumbers appear in the equatorial
instability, leading to chaotic flow, as evidenced by filled phase space trajectories.

3. Equatorial Instability (EI) Branch : Also branching at Re ≈ 4500, this branch features a two-
vortex structure near the equator, driven by twin jet streams. These jets become unstable at
Re > 4750, supporting an azimuthal instability (k = 7) but no chaotic behavior within the studied
Re range. Hysteresis is observed, with the EI branch extending backward to Re = 400 before
reverting to the axisymmetric branch (see Figure 2b).

4. Conclusions
This study explains the complex bifurcation behavior in narrow gap spherical Couette flow, highlighting
the sensitivity to initial conditions and the emergence of distinct flow regimes. The axisymmetric branch
transitions to periodicity, the TWI branch exhibits spiral and equatorial instabilities leading to chaos,
and the EI branch features unstable twin jets with hysteresis. These findings enhance our understanding
of rotational instabilities and flow transitions, with potential applications in rotating machinery and
geophysical modeling. Future work should explore larger gap ratios to generalize these observations.
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Emergence of Intermittency and hibernation in
elastoinertia TC flows

T. Boulafentis ∗, T. Lacassagne †, N. Cagney‡, S. Balabani§¶

Intermittency is a common feature in viscoelastic turbulent flows, occurring in both negligible (Jun , 2017;
Singh , 2024) and high (Xi , 2012; Rosti , 2023) inertia regimes but has received comparatively less attention
in Taylor-Couette flows.

We report experimental evidence of intermittency in viscoelastic Taylor Couette flows at an intermediate Re
= 120 (below the onset of inertia turbulence, corresponding to laminar Taylor Vortex Flow-TVF in Newtonian
cases) and high Wi. By performing PIV velocity measurements with solutions of polyacrylamide (PAAM) in
water-glycerol spanning a wide range of elasticity values (El=0-0.64, Wi=0-76.4), we show that viscoelasticity
initially destabilises the base flow, gradually leading to elastoinertia turbulence (EIT ) through a series of
flow transitions, and suppresses it at higher values of elasticity (Wi>63.7). The turbulence suppression is
accompanied by a promotion of flow intermittency for increasing Wi, characterised by periods of extreme
turbulent events (active turbulence) and periods where turbulence is almost fully suppressed (hibernating
turbulence).

Active turbulence consists of weakly chaotic solitary pairs of vortices which gradually become scarcer and
weaker for increasing Wi due to elastic dissipation. The hibernating state involves weak fluctuations, which
are independent of Wi but remain above the laminar case, consistent with the picture of marginal turbulence.

The study highlights the dual effect of viscoelasticity, destabilising and stabilising TC flows even at moderate
inertia (Re = 120).

Figure 1: Velocity vectors with azimuthal vorticity contours, normalised by the rotational speed of the inner
cylinder, Ωθ/Ωi, for fixed Reynolds number, Re=120 and (a) Wi=0 (0 ppm),(b) Wi=8.3 (10 ppm), and (c)
Wi=76.4 (700 ppm).
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Spin-up and Spin-down Flow Instabilities in Cylinders 
Ellen Bartle*1†, Céd ric Beau me1 

Ellen Bartle*†, Cédric Beaume†, Nik Kapur†, Greg de Boer † 

Several areas of academia and industry, ranging from projectile dynamics (Wedemeyer, 1964) to food 

processing (Goto, 2023), seek to deepen their understanding of fluid behaviour within bounded rotating 

systems. Despite their practical relevance, the transient flows that emerge in such configurations remain poorly 

understood, due in part to a lack of targeted studies examining the onset and development of instabilities. 

The present study focuses on the impulsive spin-up and spin-down flows, of a Newtonian fluid, in bounded 

cylinders. In the impulsive spin-up case, a stationary cylinder filled with a fluid, initially at rest, is suddenly set 

into rotation, while in the impulsive spin-down case, a rotating cylinder containing a fluid in solid-body rotation 

is abruptly stopped. While geometrically simple, these setups generate complex flow structures driven by 

viscous boundary layer dynamics, redistribution of angular momentum, and the onset of instabilities 

(Greenspan, 1968; Benton, 1974). Analytical techniques are employed alongside high-order numerical 

simulations to investigate the criteria for the development of these instabilities. Starting from the Navier–Stokes 

equations expressed in cylindrical coordinates under the assumption of axisymmetry, expressions for the 

azimuthal velocity are derived in unbounded cylinders and in cylinders bounded by rigid walls. A parametric 

study involving the aspect ratio is conducted to explore the influence of the geometry and show how bounded 

system flows asymptotically approach the behaviour of unbounded systems as the aspect ratio increases. The 

investigation is then extended to three-dimensional simulations using spectral methods tailored for cylindrical 

geometries (Boroński & Tuckerman, 2007a, 2007b). This methodology enables a detailed examination of 

boundary layer evolution of intricate flow structures and of the onset of instabilities. This combination of 

analytical and numerical approaches allows the identification of the spatial structure of the vortical modes 

developing near the side and the end walls, thereby providing the criteria for instability in impulsive spin-up and 

spin-down flows within rotating cylinders.  
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Near onset dynamics
in natural doubly diffusive convection

C. Beaume∗†, J. Tumelty†, A. Rucklidge†,
A. Bergeon‡, E. Knobloch§

Doubly diffusive convection may occur when a fluid is subject to thermal and compositional variations that
affect the fluid density and diffuse at different rates. In natural doubly diffusive convection, the gradients of
temperature and salinity are horizontal and point in the same direction. This configuration has been studied in
the balanced case where the buoyancy ratio N = −1, i.e., when thermal and solutal variations within the fluid
yield forces of equal strengths but opposite directions. This configuration admits a conduction state, where the
fluid is stationary and the temperature and concentration profiles are linear. Natural doubly diffusive convection
possesses a rich bifurcation structure (Beaume, Rucklidge & Tumelty , 2022) and most of the attention has
focused on the subcritical case, where the primary instability from the conduction state generates families of
subcritical steady convection states.

In vertically extended domains with rigid top and bottom end-walls and a square horizontal cross-section,
the primary bifurcation leads to the formation of spatially localized convection rolls known as convectons. These
steady states are organized in a pair of intertwined solution branches within a well-defined range of Rayleigh
numbers. This behavior is known as snaking. Secondary instabilities along the primary branches of convectons
are found to yield twisted convectons and secondary snaking (Beaume, Bergeon & Knobloch , 2013). The
twist instability destabilizes the primary convectons and is responsible for the absence of stable steady states,
localized or otherwise (Beaume, Bergeon & Knobloch , 2018). As a result, for Rayleigh numbers beyond the
threshold for primary instability, the system undergoes an abrupt transition to large amplitude spatio-temporal
chaos (Beaume , 2020).

In this talk, I will describe the aforementioned dynamical phenomena. I will also present the computation
of doubly diffusive convectons in the supercritical regime, a scenario that was thought to be impossible about
a decade ago (Tumelty, Beaume & Rucklidge , 2023), and describe what happens to convectons when thermal
and solutal variations do no longer yield forces of equal strengths, i.e., in the unbalanced, N ̸= −1, case
(Tumelty, Beaume & Rucklidge , 2025).
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Finite amplitude analysis of Poiseuille flow in fluid
overlying porous domain

P. Bera∗†, A. Aleria∗,

A weakly nonlinear stability analysis of isothermal Poiseuille flow in a fluid overlying porous domain (see
Fig. 1) is proposed and investigated in this article (aleria (2024)). The flow is characterized by Navier-Stokes
equations in the fluid domain and by Darcy’s law in the porous domain.

Figure 1: Schematic of the physical problem.

The nonlinear interactions are studied by imposing finite amplitude disturbances to the classical model
deliberated in chang (2006). The order parameter theory (stuart (1960)) is used to ascertain the cubic
Landau equation:

In fluid domain:
d|A|2

dt
= 2aci|A|2 + 2a1r|A|4. (1)

In porous domain:
d|Am|2

dtm
= 2amcmi|Am|2. (2)

The amplitude (|A|, |Am|) = (0, 0) is stable for Re < Rec and unstable for Re > Rec. Here Rec stands for
the critical value of Reynolds number, whereas, a and ci denote the wave number in stream-wise direction and
imaginary part of complex wave-speed, respectively. Consequently, from equation 1-2, the bifurcations depend
on only real part of Landau constant (a1r). Now, the non-zero finite amplitude solution exists when aci and
a1r are of opposite signs. This raises two such possible combinations: first, aci > 0 and a1r < 0; second,
aci < 0 and a1r > 0. The former leads to the supercritical bifurcation and the latter leads to the subcritical
bifurcation (rogers (1993),sharma (2018)).

The well-established controlling parameters viz. the depth ratio (d̂ = depth of fluid domain/depth of
porous domain), Beavers-Joseph constant (α) and the Darcy number (δ) are inquired upon for the bifurcation
phenomena. The imposed finite amplitude disturbances are viewed for bifurcations along the neutral stability
curves and away from the critical point as a function of the Reynolds number (Re). Linear stability analysis
predicts three different modes of instability: porous (for relatively smaller values of a), even-fluid-layer (for
moderate value of a), and odd-fluid-layer (for relatively large value of a). For large value of (d̂) even-fluid-
layer mode dominates instability (see figure 2(b)). The even-fluid-layer (porous) mode along the neutral
stability curves correlates to the subcritical (supercritical) bifurcation phenomena (see figure 2(c)-(d)). On
perceiving the bifurcations as a function of Re by moving away from the bifurcation/critical point, subcritical
bifurcation is observed for increasing d̂, α and decreasing δ. In contrast to only fluid flow through a channel,
it is found that the inclusion of porous domain aids in the early appearance of subcritical bifurcation when

∗Corresponding author: pberafma@iitr.ac.in
†Indian Institute of technology Roorkee, Roorkee, India
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Figure 2: (a, b) Neutral stability curves obtained by linear theory for different values of d̂, (c, d) Variation
of Landau constant (a1r) obtained by weakly nonlinear theory along the neutral stability curves for different
values of d̂ (α = 0.1, δ = 0.001).

Figure 3: Variation of a1r with ∆Re for different values of (a) d̂ (α = 0.1, δ = 0.001), (b) α (d̂ = 0.13, δ =

0.001) and (c) δ (d̂ = 0.13, α = 0.1).

α = 0.2, d̂ = 0.13, δ = 0.001. A considerable difference between the computed skin friction coefficient for
the base and the distorted state is observed for small (large) values of d̂ (α). In addition, an intrinsic relation
amongst the mode of instability, bifurcation phenomena and secondary flow pattern is also observed.
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Stochastic excitation of acoustic waves by turbulent 
convection: influence of rotation and magnetic fields 

L. Bessila1 2, S. Mathis2

Abstract Format: 

Acoustic waves can be stochastically excited by the motion of a turbulent flow (Samadi & Goupil 2001). This 

phenomenon has many applications in astrophysics: acoustic waves are generated in the convective regions of 

stars and gas giant planets (Aerts 2010, Gaulme 2015), providing valuable information about their internal 

structure. However, most theoretical models of stochastic excitation neglect the effects of magnetic fields and 

rotation, despite their significant impact on convective dynamics (Stevenson 1979, Ecke et al 2023). Notably, 

observations from the Kepler space mission have notably revealed the absence of acoustic mode signals in a 

substantial fraction of rapidly rotating and highly magnetised stars (Mathur et al. 2019). Since these waves are 

essential for characterizing stars and their planetary systems, it is crucial to incorporate rotation and magnetic 

effects into existing theoretical models. 

We present a theoretical framework to model stochastic excitation, applicable to all types of waves in spherical 

geometry. We include the influence of a magnetic field and of rotation on the dynamics of excitation by turbulent 

convection. We demonstrate that rotation systematically reduces the efficiency of mode excitation. Moreover, we 

identify two distinct magnetic regimes: while a moderate magnetic field can enhance the excitation of acoustic 

waves, a strong magnetic field suppresses their generation. We discuss the implications of these findings for a 

star similar to the Sun. 
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Angular momentum transport in Quasi-Keplerian flow
with radial convection.

A. Bhadra†, J. Wicht†, X. Zhu∗††

Protoplanetary disks are expected to be turbulent based on observational data. However, because their gas
orbits at nearly Keplerian speed—a Rayleigh-stable configuration—the physical origin of this turbulence remains
a mystery. Radial thermal convection may drive turbulence in the weakly-ionized regions of protoplanetary
disks (Teed and Latter , 2021; Lesur et al. , 2022). To explore this mechanism, we perform direct numerical
simulations of thermal convection in a Taylor–Couette flow setup in the quasi-Keplerian regime with radius ratio
η = 0.2 subject to a centrally directed gravitational field. The inner cylinder is held at a higher temperature
than the outer cylinder, and we vary the Taylor number over the range 107 ≤ Ta ≤ 109. To mimic disk-
relevant buoyancy-to-shear ratios, we fix the Richardson number Ri = RaPr/Ta = 0.1, where Ra and Pr
are the Rayleigh and Prandtl numbers, respectively. Pr is fixed at 1. Our results show that, as Ta increases,
the thermal Nusselt number Nut grows—signifying enhanced outward heat transport—while the angular
velocity Nusselt number Nuω decreases and, across most of the parameter range, becomes negative. The
latter indicates a net inward transport of angular velocity, which we attribute to Reynolds stresses generated
by convective motions. These findings not only shed light on the potential role of radial convection in
astrophysical disks but also guide the design and interpretation of future laboratory experiments aimed at
reproducing quasi-Keplerian turbulence.

Figure 1: Radial velocity profile along the r − θ plane at mid-height for Ta = 108 and Ri = 0.1.
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Theory and simulation of internal wave spectra in the ocean

O. Bühler, M. Shavit∗†,

One hundred years ago the atmosphere and oceans were believed to be in turbulent motion based on their
enormous Reynolds numbers. This slowly gave way to the realization that density stratification and Coriolis
forces strongly inhibit three-dimensional turbulence, making it the exception rather than the rule in geophysical
fluid dynamics. This poses long-standing problems, especially for deep ocean dynamics, where turbulent vertical
mixing is crucial but stems from hard-to-predict rare pockets of turbulence caused by breaking internal gravity
waves. Much effort has therefore been spent in trying to understand the creation and maintenance of internal
wave energy cascades in the ocean. In this talk I will show recent results based on kinetic wave theory for
internal waves that treats both stratification and Coriolis forces on equal footing. This leads to a simpler
kinetic equation for the wave dynamics, albeit currently only in a two-dimensional setting. Theoretical and
numerical results are shown for wave energy spectra and cascades in this system and compared to observations.
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Revision of the linear stability paradox for known bounded shear 
flows

S. Chefranov12, A. Chefranov3

The well-known paradox of linear stability for the Hagen-Poiseuille (HP) and Plane Couette (PC) flows is not solved up to now 
and is bypassed on the basis of the non-linear mechanisms consideration. We prove that it is arising only due to an idealized 
assumption of an exact space periodicity for the small hydrodynamic perturbations. When finite non-zero viscosity is taken 
into account only quasi-periodic in space perturbations can be considered in the frame of linear stability theory. For the quasi-
periodic in longitudinal direction disturbances the linear instability of the HP flow, Plane Poiseuille flow (PP) and PC flow at the 
finite Reynolds numbers, is obtained. The generalization of Landau’s critical velocity for the vortexes arising in the laminar HP, 
PP and PC flows of classical fluids also stated. 
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Accessing the dipole-multipole transition in rapidly
rotating spherical shell dynamos

A. T. Clarke∗†, C. J. Davies†, S. Naskar†, S. J. Mason†

Earth’s magnetic field has exhibited erratic polarity reversals over much of its history; however, the processes
that cause polarity transitions are still poorly understood. Dipole reversals have been found in many numerical
dynamo simulations and often occur close to the transition between dipole-dominated and multipolar dynamo
regimes. However, the physical conditions used in reversing simulations are necessarily far from those in Earth’s
liquid iron core because of the long runtimes needed to capture polarity transitions and because a systematic
exploration of parameter space is needed to find the dipole-multipole transition.

We develop a unidimensional path theory in an attempt to simplify the search for the dipole-multipole
transition at increasingly realistic physical conditions. We consider three paths that are all built from the
requirements of a constant magnetic Reynolds number Rm; one path further attempts to impose balance
between Magnetic, Coriolis, and Archimedean forces (a MAC balance) while the other two seek to constrain
solutions to an inertia-MAC, or IMAC, balance. The presence of inertia, although not geophysically realistic,
allows us to build paths that more closely follow the conditions where simulated reversals have been found to
date.

Numerical simulations show reasonable agreement with the expected physical conditions along the paths
within the accessible parameter space, but also deviate from predicted behaviour for certain diagnostic quanti-
ties, particularly the magnetic field strength and the magnetic/kinetic energy ratio. Furthermore, the paths do
not follow the dipole-multipole transition; starting from reversing conditions, simulations move into the dipolar
non-reversing regime as they are advanced along the path. By increasing the Rayleigh number, a measure
of the buoyancy driving convection, above the values predicted by the path theory, we are able to access the
dipole-multipole transition down to an Ekman number E ∼ 10−6, comparable to the most extreme conditions
reported to date.

Our results, therefore, demonstrate that the path approach is an efficient method for seeking the dipole-
multipole transition in rapidly rotating dynamos. However, the conditions under which we access the dipole-
multipole transition become increasingly hard to access numerically and also increasingly unrealistic because
Rm rises beyond plausible bounds inferred from geophysical observations. Future work combining path theory
with variations in the core buoyancy distribution, as suggested by recent studies, appears a promising approach
to accessing the dipole-multiple transition at extreme physical conditions.
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Exploring Bifurcation Structures in the Regularized

Four-Sided Lid-Driven Cavity Flow

M. Reborido*, J. Curbelo��, A. Alonso�, A. Meseguer�

The four-sided lid-driven cavity �ow problem is of high interest for two main reasons: it is a benchmark in
computational �uid mechanics for validating di�erent numerical solvers of the Navier-Stokes equation, and it
acts as a test bed for studying particular physical e�ects.

In this study, we provide an overview of the bifurcation analysis for this problem and carry out some explo-
rations for new possible emerging branches of the bifurcation diagram. In order to avoid corner singularities
caused by the discontinuities of the velocity at the boundary, we consider a regularized version of the problem
by setting the wall speed to follow a double exponential distribution. This allows for exponential convergence
in spectral discretization schemes, such as the Newton-Krylov method, which we use alongside a continuation
algorithm for computing steady solutions with di�erent Reynolds numbers.

Additionally, we present four di�erent explorations on the bifurcation diagram based on introducing a small
perturbation in the velocity of one (or more) of the lids . We then study the nature of the resulting branches,
calculated with the previously mentioned continuation algorithm; and whether the original bifurcation points
are conserved or not.

Figure 1: Bifurcation diagram visualized after breaking both rotational and re�ection symmetries in the
boundary conditions.

Acknowledgments:

We acknowledge the support of PID2020114043GB-I00, RYC2018-025169,CNS2023-144555 funded by MI-
CIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.

References

Meseguer, A., Alonso, A., Batiste, O., An, B., & Mellibovsky, F. (2024). �Bifurcation analysis in the regularized
four-sided cavity �ow: Equilibrium states in a D 2-symmetric �uid system�. Physics of Fluids, 36(6).

Reborido Fuentes, M. (2024). Homotopic D2-symmetry breaking of bifurcation scenarios of the four-sided lid driven
cavity �ow problem (Master's thesis, Universitat Politècnica de Catalunya).

*Universidad de Santiago de Compostela
�Corresponding author: jezabel.curbelo@upc.edu
�Universitat Politècnica de Catalunya- BarcelonaTech

23



Role of Elasticity and Inertia in Particle Migration: A 

Theoretical and Experimental Study in Complex Taylor 

Vortices 
M. Davoodi1 2, A. Clarke2

The flow between concentric cylinders, driven by wall motion, is widely studied in fluid mechanics due to the 

ability to create diverse flow conditions. These range from simple shear flows to complex steady state and to 

time-dependent behaviours characterised by Taylor vortices. While often considered in academic research, this 

geometry is also found in practical applications, such as in the oil and gas industry, where drilling fluids are used 

to transport cuttings along an annulus to the surface (Davoodi and Clarke, 2024). Understanding the behaviour 

of these fluids, especially when they exhibit non-Newtonian and viscoelastic properties, is crucial for practical 

purposes; that is, improving particle transport and well-bore cleaning efficacy. 

In this study we aim to clarify the roles of different physical forces, particularly elasticity and inertia, in particle 

migration within annular flow with center-body rotation. We develop a comprehensive approach that combines 

theoretical analysis, numerical simulations, and experimental observations (Clarke and Davoodi, 2025). Our 

Eulerian-Eulerian model solves separate momentum equations for both the fluid and particle phases, allowing 

us to determine distinct velocity fields for each. This approach highlights the relative motion between the 

particles and fluid, framing the problem as a "resistance" rather than a "mobility" issue. 

By examining how inertial and elastic forces influence the drag and lift on particles, we demonstrate their 

combined effects on particle migration. Our results reveal that inertia causes particles to move outward within 

the vortices, forming ring-like structures, while elasticity tends to pull them toward the vortex center. The interplay 

between these forces is captured effectively by our model and aligns well with experimental observations, offering 

new insights into suspension flow dynamics in complex conditions. 
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Instability in centrifugally stable shear flows

K. Deguchi∗†, M. Dong‡,

We investigate the linear instability of flows that are stable according to Rayleigh’s criterion for rotating
fluids. Using Taylor-Couette flow as a primary test case, we develop large Reynolds number matched asymptotic
expansion theories. Our theoretical results not only aid in detecting instabilities previously reported by Deguchi
(2017) across a wide parameter range but also clarify the physical mechanisms behind this counterintuitive
phenomenon. Instability arises from the interaction between large-scale inviscid vortices and the viscous flow
structure near the wall, which is analogous to Tollmien-Schlichting waves. Furthermore, our asymptotic
theories and numerical computations reveal that similar instability mechanisms occur in boundary layer flows
over convex walls.
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Axisymmetric rolls in rotor-stator flow

Y. Duguet∗†, A. Gesla ,2∗‡, L. Martin Witkowski ‡§, P. Le Quéré ∗

Rotor-stator flows exhibit instabilities in the form of circular and spiral rolls. The origin of the spirals is
known as a standard supercritical bifurcation, however the dynamical origin of the circular rolls is still unclear.
In the present work we propose an explanation for the circular rolls as a linear response of the system to
external forcing. We consider two types of axisymmetric forcing: bulk forcing (based on the resolvent analysis)
and boundary forcing (based on direct numerical simulation). Using the singular value decomposition of the
resolvent operator the optimal response is computed and takes the form of circular rolls. The optimal energy
gain is found to grow exponentially with the Reynolds number (based on the rotation rate and interdisc spacing
H), in connection with huge levels of non-normality. The results for both types of forcing are compared with
former experiments (Schouveiler , 2001). The linear response is also compared with the fully nonlinear self-
sustained periodic and quasiperiodic solutions found for the unforced problem. Our findings suggest that at
low Reynolds number typical of experimental observations, the circular rolls observed experimentally are the
combined effect of the high forcing gain and the roll-like form (cf. fig. 1) of the leading response of the
linearised operator. At slightly higher Reynolds number, nonlinear receptivity can also lead to the nonlinear
oscillatory states identified in the unforced problem (Gesla , 2024).

Figure 1: Vorticity of axisymmetric rolls forced externally at Re = 250.
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Recent activities in experimental research on liquid metal 
Rayleigh-Bénard convection at HZDR 

T. Vogt1, F. Schindler1, N. Kim1, S. Su2, M. Sieger1

T. Wondrak1, S.Eckert1,3

Abstract
For about 10 years, the Department of Magnetohydrodynamics at the HZDR has been increasingly involved in the 
experimental investigation of Rayleigh-Bėnard convection in liquid metals at very low Prandtl numbers, Pr ~ 10-2 - 10-3, 
which is of great interest for geo- and astrophysics. The thermally driven convective flow dynamics of liquid metals are 
very different from moderate-Pr fluids, such as water. Owing to the large discrepancies in the diffusion of heat and 
momentum, significant differences between velocity and temperature fields occur. The large-scale convection (LSC) in 
liquid metals exhibits a significantly more pronounced intermittent behavior and higher turbulence at comparable 
Rayleigh numbers, Ra. Here, the thermal boundary layer (BL) thickness exceeds that of the viscous BL, exposing it to 
direct interaction with the turbulent flow. It is well-known that the intermittent behavior of the viscous and thermal BL’s 

increase significantly at small Pr. The viscous BL in a liquid metal becomes turbulent at smaller Ra than comparable 
convection in gases or water. Thus, a stronger influence of the LSC on the thermal BL thickness and, furthermore, on 
the local properties of the heat transport is likely.  

A  B  C  D
Figure 1: Time series of the energy contributions of the main POD modes and the volume-averaged Reynolds 

number with snapshots of the 3D flow pattern (streamlines) at Ra = 6108, Pr = 0.025, aspect ratio 0.5 

1 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany 
2 Universitė Rouen Normandie, Rouen, France 
3 Corresponding author 

27



Here, we present investigations in cylindrical convection cells of aspect ratio 1 and 0.5 as well as in a rectangular cell 
with a square base area of 1 m2 and an aspect ratio of 25. Our flow measurements demonstrate that the reduction of 
the aspect ratio in the cylindrical cells increases the volatility of the LSC, one can even describe this as a collapse of 
the coherent LSC (Schindler et al., 2022). Figure 1 shows, how the single-roll structure of the LSC alternates in short 
succession with double-roll and triple-roll structures in time periods smaller than the turn-over time (Wondrak et al., 
2023). Temperature measurements within the thermal BL reveal strong fluctuations of the BL thickness and increasing 
deviation from the Prandtl–Blasius–Pohlhausen profile with increasing Ra (Kim et al., 2024). Furthermore, we will show 
measurements of the temperature and velocity fields in the shallow convection cell. These experiments focus on the 
search for so-called turbulent superstructures with their special characteristics in low-Pr fluids. Figure 2 shows an 
example of flow measurements by means of the ultrasound Doppler velocimetry (UDV). 

Figure 2: Spatio-temporal flow pattern recorded by UDV in a rectangular convection cell of aspect ratio 25, 
Ra = 1.8105, Pr = 0.025 
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Wall modes in rotating Rayleigh-Bénard convection:

robustness and breakdown

B. Favier∗†, L. Terrien†, E. Knobloch‡

Heat transport by rapidly-rotating Rayleigh-Bénard convection is of fundamental importance to many
geophysical and astrophysical �ows. However, laboratory measurements in tall, narrow cylinders (Cheng ,
2018) are often compromised by the emergence of robust wall modes that develop along vertical boundaries
(Favier & Knobloch , 2020). These modes can signi�cantly enhance the overall heat �ux (de Wit , 2020;
Zhang , 2020), complicating e�orts to isolate and measure the contribution from bulk convection.

Using Direct Numerical Simulations, we demonstrate the surprising persistence of wall modes, even far
beyond their linear onset and despite substantial changes to domain geometry. Finally, we show that adding
narrow horizontal �ns along the vertical walls e�ectively suppresses these modes, reducing their contribution
to the total heat �ux to negligible levels in the geostrophic regime (Terrien , 2023). This method could
be experimentally feasible and may open the door to more accurate studies of rotating convection in the
geophysically relevant regime.
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Figure 1: Left: Transverse section focusing on one side of the Cartesian domain. All boundaries are no-slip
with periodic boundary conditions in the direction normal to the plane. The obstacle has a height h and
width ε. All vertical boundaries are thermally insulating while we impose a temperature equal to that of the
linear equilibrium background on all horizontal boundaries (including the barrier). Right: Visualizations of the
temperature �eld for a �xed barrier height and increasing barrier width from left to right. The wall mode
attached to the boundary is clearly visible on the left while it has completely disappeared on the right.
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Influence of Surface Tension and Gravity Force on
Compressible Kelvin-Helmholtz Instability

Y. Fukumoto∗†, R. Zou‡, K. Matsuura§, N. Taniguchi¶

For an incompressible fluid, an interface of tangential-velocity discontinuity suffers from the Kelvin-
Helmholtz instability (KHI), with growth rate proportional to velocity discontinuity. Compressibility acts to
stabilize KHI and, if limited to two dimensions, suppresses KHI for the Mach number larger than

√
8 (Landau,

1944). We extend this analysis to include surface tension and the gravity effect, with allowance made for
density discontinuity. In case a light gas lies over a heavy gas, the gravity force as well as the surface tension
acts as restoring forces. We find that these restoring forces cause instability of the interface, otherwise being
stabilized by compressibility effect at high Mach numbers.

Compressible Kelvin-Helmholtz Instability

Let us take, as the basic flow, U = (U, 0, 0) (z > 0), U = 0 (z < 0), in Cartesian coordinates with z
directed vertically upward. We superpose irrotational disturbances to this basic flow, with the interface z = 0
being disturbed in the form exp[i(kx+ ly−ωt)]. The disturbed pressure field is governed by a wave equation
derived from the compressible linear Euler equation. Requiring that the pressure is continuously connected at
the interface, we gain the dispersion relation (Landau 1944, Landau and Lifshitz 1987).

ω =
1

2
kU ± k̃

√
1

4
U2 cos2 ϕ+ c2 ± c

√
c2 + U2 cos2 ϕ, (1)

where c is the speed of sound and (k, l) = (k̃ cosϕ, k̃ sinϕ) with k̃ =
√
k2 + l2 and ϕ being the angle of

the wave vector measured from the x-axis. As the velocity difference |U | increases, the quantity with − sign
under the root symbol increases from a negative value and turns into positive values when M >

√
8/| cosϕ|

with M = |U |/c being the Mach number. Restricting to two-dimensional disturbances (ϕ = 0), the critical

Figure 1: Amplification factor of compressible Kelvin-Helmholtz instability, relative to the incompressible KHI,
for two-dimensional perturbations (ϕ = 0).

Mach number for stabilization is Mc =
√
8 ≈ 2.828. Fig. 1 shows the amplification factor, relative to the

incompressible KH instability, of the growth rate. For 3D disturbances, Mc increases and the amplification
factor decreases with ϕ.
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There is a mathematical analogy between the shallow water and a compressible gas flow. A discontinuous
surface in tangential velocity of an incompressible shallow-water flow of depth H is stabilized when the
discontinuous velocity is greater than

√
8gH (Jin, Le and Fukumoto 2019, Le, Fukumoto and Koch 2024).

Compressible Rayleigh-Taylor Instability

When the density is discontinuous across the interface, a question naturally arises of how the gravity force
influences KHI. When a heavy gas lies below, internal gravity waves propagate along the interface, but, when a
heavy gas lies above, the Rayleigh-Taylor instability (RTI) is invited. Knowledge of the effect of compressibility
on RTI has been accumulated over a half century since 1970’s (Gauthier and Creurer, 2010).

We take the motionless state U = 0 as the basic flow, and consider the isothermal process. The pressure
p and the density ρ is connected through p = ρc2. Here c is the isothermal sound speed. In the presence of
the gravity force, the density of the basic state varies with the height z as ρ(z) = ρ(0) exp(−gz/c2). We refer
to the upper (z > 0) and the lower (z < 0) fluids by using the subscripts 1 and 2. By enforcing continuity of
the normal velocity and the pressure at the disturbed interface, we are led to the dispersion relation (Mathews
and Blumenthal 1977).

ω2(ρ2Q2 − ρ1Q1)− k2(ρ2 − ρ1)g = 0, (2)

where Qi is the z component of the wavenumber vector,

Q1 =
g

2c21

{
1−

√
1 +

4c41
g2

(
k2 − ω2

c21

)}
, Q2 =

g

2c22

{
1 +

√
1 +

4c42
g2

(
k2 − ω2

c22

)}
. (3)

An analysis of (2) tells that, for small values of g/(c21k) and g/(c22k), compressibility has a tendency of
decreasing the growth rate from the incompressible limit

√
gk(ρ1 − ρ2)/(ρ1 − ρ2).

Influence of surface tension and gravity force on compressible KHI

A natural question is raised as regards the interaction between KHI and RHI of a compressible gas. Here we
highlight the influence of surface tension and gravity force on KHI. In case a light gas lies over a heavy gas,
the gravity force as well as the surface tension acts as restoring forces. We find that the both restoring forces
cause instability of the interface, otherwise being stabilized by compressibility effect at high Mach numbers.
To resolve this puzzling result, we are requested to clarify the role not only of the vorticity, but also of the
dilatation ∇ · u. The mechanism for predominance of 3D disturbances, over 2D ones, is also to be clarified.

A mixing layer is thought of as a model that desingularizes the jump in tangential velocity discontinuity.
A highly complex vortical structures are created, as the Reynolds number is increased, by going through
successive instabilities. We conduct numerical simulations of a compressible mixing layer based on the Naiver-
Stokes equations. By applying the hierarchical eddy clustering method Matsuura and Fukumoto (2022) to
the numerical data, which automatically extracts and tracks locally connected vortical structures, we identify
and classify fine vortical structures, and thereby draw a possible scenario for transition to turbulence.
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Dielectrophoretic-driven convection in spherical
Taylor-Couette flow

Y. Gaillard ∗†, P.S.B. Szabo∗, C. Egbers∗

The AtmoFlow experiment is a laboratory model designed to investigate idealized large-scale atmospheric
flow fields, scheduled to operate aboard the International Space Station (ISS) by 2026. The setup consists
of two concentric, independently rotating spherical shells, simulating planetary rotation. Thermal gradients
are imposed by equatorial heating and polar cooling, replicating the temperature differences driven by solar
radiation. An electric field is applied to the dielectric fluid confined between the shells, generating a dielec-
trophoretic force that acts as an artificial gravity, inducing buoyant convection. The resulting central force field
is governed by Gauss’s law, producing a thermal flow analogous to Rayleigh-Bénard convection. By employing
the continuity, momentum, and energy equations, a forcing parameter analogous to the Rayleigh number is
given by

RaE =
ϵ0ϵrγeV

2
0

2ρ0νκ
∈
[
1.83× 105, 2.07× 107

]
, with γe = e∆T (1)

where ϵ0 is the vacuum electric permittivity, ϵr the relative electric permittivity, γe the thermoelectric parameter,
V0 the applied electric tension, ρ0 the reference density, ν the kinematic viscosity, κ the thermal diffusivity,
γe the thermoelectric parameter, e the expansion coefficient of the electric permittivity and ∆T the applied
temperature difference between the shells.

While the spherical shell experiment cannot only rotated in solid body configuration, it is also capable of
rotating the spherical shells independently resulting in spherical Taylor-Couette flow which is the subject of
this study. By utilising the rotating framework of reference at the outer cylinder Ω2 via the Taylor number,
Ta. The relative rotation difference is governed by the Rossby number, Ro, and applied at the inner shell via
Ω1. T

Ta
4Ω2

2d
4

ν2
∈
[
1.10× 102, 6.37× 105

]
, Ro =

Ω1 − Ω2

Ω2
∈
[
4.29× 10−1, 1.14

]
(2)

where d is the characteristic length defined by the spherical gap-width.
A combination of momentum flux due to rotation and buoyancy gives rise to distinct flow patterns, which

depend on the magnitude of the forcing parameter. Previous studies have shown that the dielectrophoretic force
generates plume-like patterns in the radial direction Futterer (2008, 2013), while differential rotation create
circulating flows between the Equator and Poles Haberman (1962); Munson (1971). The present study theses
combined interactions of both transport mechanisms and explores the resulting flow structures. The numerical
simulations are conducted by utilising the OpenFOAM ecosystem, an open-source finite volume solver, to
model the AtmoFlow experiment. The simulations show emerging convective regimes in the spherical gap and
classifies the observed patterns into distinct regimes, illustrating the transition between different convective
states. Additionally, the heat flux through the system is analysed in relation to the forcing strength, providing
an estimate of the heat transported across the spherical shell gap. Variations in thermal transport are correlated
with kinetic energy, revealing the interplay between convective patterns and energy transfer. This investigation
provides a better understanding of thermal and momentum transport and their interaction with one another.

Acknowledgement

The AtmoFlow project is supported by the BMWi via the German Space Administration (Deutsches Zentrum
für Luft- und Raumfahrt) under Grant No. 50WP1709, 50WM1841, 50WM2141 and 50WM2441 and via the
National High Performance Computing centre NHR with Grant No. bbi00021.

References
∗Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-

Halske-Ring 15a, 03046 Cottbus, Germany
†Corresponding author: gaillard@b-tu.de

32



Futterer, B., Hollerbach, R., & Egbers, C. (2008, November). “GeoFlow: 3D numerical simulation of supercritical
thermal convective states”, In Journal of Physics: Conference Series, 137, No. 1, p. 012026. IOP Publishing.

Futterer, B., Krebs, A., Plesa, A. C., Zaussinger, F., Hollerbach, R., Breuer, D., & Egbers, C. (2013). “TSheet-like
and plume-like thermal flow in a spherical convection experiment performed under microgravity”, Journal of Fluid
Mechanics, 735, 647-683.

Haberman, W. L. (1962). Secondary flow about a sphere rotating in a viscous liquid inside a coaxially rotating spherical
container. The Physics of Fluids, 5(5), 625-626.

Munson, B. R., & Joseph, D. D. (1971). Viscous incompressible flow between concentric rotating spheres. Part 1. Basic
flow. Journal of Fluid Mechanics, 49(2), 289-303.

33



A shear-flow instability induced by
a localised field in ideal MHD

S. P. Myers†, S. D. Griffiths∗†, S. M. Tobias†

The dynamics of an electronically conducting fluid and a magnetic field, coupled through the Lorentz force
and the induction equation, are important for understanding many astrophysical processes. When the effects
of density stratification may be neglected (e.g., where the flow is constrained to be horizontal, perhaps by
background rotation), and for large-scale flows with both Reynolds number Re ≫ 1 and magnetic Reynolds
number Rm ≫ 1, many processes may be modelled by the equations of ideal two-dimensional magnetohydro-
dynamics (2DMHD). This limit is often used to model the interaction of a toroidal field with the zonal flows
that dominate many planets, stars, and accretion discs.

Within 2DMHD, an important paradigm problem is the linear stability of a parallel shear flow with an
aligned magnetic field, which is often studied using normal modes for which the growth rate is sought as
a function of along-stream wavenumber (e.g., Michael, 1955; Chandrasekhar, 1961; Kent, 1968; Chen and
Morrison, 1991; Hughes and Tobias, 2001). A key result of such theory is that a magnetic field that is
everywhere sufficiently strong will stabilise a flow that is unstable in the absence of a magnetic field, as first
demonstrated by Kent (1968) for a non-rotating flow in Cartesian geometry. However, magnetic fields can be
destabilising. This is most evident via a so-called joint instability (Stern, 1963), in which the flow is stable in
the absence of a magnetic field, but adding a magnetic field with a carefully chosen strength and cross-stream
profile can lead to instability. In the case of the Sun, for which the differential rotation profile is thought to
be hydrodynamically stable (Charbonneau et al., 1999), it has been demonstrated that a joint instability is
possible when various potentially realistic magnetic field profiles are imposed (Gilman and Fox, 1997; Dikpati
and Gilman, 1999).

Here we analyse what is believed to be a novel joint instability in ideal 2DMHD. It arises from the interaction
of a localised magnetic field with a shear layer, without background rotation. The instability will be analysed in
Cartesian (x, y) geometry for a flow U(y)x̂ with aligned field B(y)x̂, and for perturbations ∝ exp(i(kx−ωt)).
The key ideas can be demonstrated – with all quantities nondimensional – for the shear layer U(y) = tanh y.
In the hydrodynamic limit, this flow is known to be unstable for 0 < k < 1, with a most unstable wavenumber
kmax ≈ 0.44 (Michalke, 1964); this is illustrated by the numerical results show in Figure 1(a). However, when
a narrow magnetic field is added around y = 0, a second tongue of instability – with a larger growth rate –
can appear at higher k. This is shown in Figure 1(a) for B(y) = 0.15 sech2(25y), for which kmax ≈ 4.2, and
for B(y) = 0.15/(1 + (25y)2), for which kmax ≈ 3.5. We call this higher wavenumber mode the SaM (shear
and magnetic) instability.

Figure 1(a) suggests that the SaM instability is rather insensitive to the lateral profile of B(y). Further,
unlike the purely hydrodynamic instability with k ≲ 1, the SaM instability is also rather insensitive to the lateral
profile of U(y), provided there is a region of approximately uniform shear where the magnetic field is non-trivial,
close to y = 0. This is illustrated in Figure 1(b), where the field is fixed as B(y) = 0.15/(1 + (25y)2), but
now three different shear flows are taken. For U(y) = tanh y, the purely hydrodynamic mode is again evident
for k ≲ 1 and the SaM instability has kmax ≈ 3.5. For U(y) = tanh y sech y, the purely hydrodynamic mode
appears to have kmax ≈ 1 and the SaM instability has kmax ≈ 3.3. For U(y) = y, there is no hydrodynamic
instability, but the SaM instability still appears, now with kmax ≈ 3.6. In all cases, again note that the SaM
instability is the most unstable mode in the system.

Here this SaM instability is investigated both analytically and numerically, in the linear regime. Given
the apparent insensitivity to the choice of U(y) and B(y), we specialise to the case with U(y) = Λy and
B(y) = B0/(1 + (y/L)2), now using dimensional quantities. We will show that this combination permits a
matched-asymptotic solution to be developed when ε = Λ2L2/B2

0 ≪ 1, which corresponds to the limit of
high magnetic energy relative to the kinetic energy over the narrow region of magnetic field. The asymptotic
expansion also relies upon a small wavenumber limit, relative to the lengthscale L of the magnetic field;
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Figure 1: Numerically-determined growth rates as a function of wavenumber k for various flow and field
configurations. (a) Instability of U(y) = tanh y, with three different magnetic fields. (b) Instability of
B(y) = 0.15/(1 + (25y)2) with three different flow fields.

for example, in Figure 1, we have kmax ≈ 4 and L = 1/25, so that kmaxL ≈ 0.16 ≪ 1. Despite the
apparent simplicity of the flow configuration, the asymptotic analysis turns out to be rather complicated, with
matching required across four regions in y, and unexpected fractional scalings in ε for the different parts of the
eigenfunction. However, the outcome is an explicit analytical prediction for the nondimensional growth rate,
which scales like ε1/3, and the most unstable wavenumber, which scales like ε8/9 as ε → 0, both of which are
shown to agree with numerical results.
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Magnetic fields in protostars: generation mechanisms
and stability

A. Guseva∗†, L. Manchon†, L. Petitdemange†, C. Pinçon‡

Abstract

Recent spectropolarimetric observations of low-mass stars show that large-scale components of their magnetic
fields can exhibit cyclic variations or reversals (Jeffers et al., 2023). This magnetic activity affects detection
of exoplanets and estimation of their masses, and so its modelling is particularly important. In convective
stellar envelopes, magnetic fields are created through dynamo action - systematic stretching and twisting of
magnetic field lines by helical convective vortices. It is yet however unclear how low-mass stars, with their
strong convective turbulence and relatively slow rotation, are able to maintain coherent large-scale magnetic
activity. In this work, we study the physical mechanisms that allow magnetic flux to accumulate at large
scales in both turbulent and strongly stratified models of stellar convection. In such models, a highly turbulent
convective layer is formed at the surface while the deep flow interiors remain rotationally constrained. Using
direct numerical simulations with 3D MHD code MagIC (Gastine and Wicht, 2012), we found that small-scale
magnetic flux, generated by small-scale turbulence in the outer flow regions with low density, is systematically
transported into more quiescent inner regions by global magnetic pumping mechanism. Consequently, the
dipolarity of the field at the surface of the domain increases both with enhancement of turbulence and
stratification. These dipoles interact dynamically with zonal flows, resulting in aperiodic transitions between
solar- and anti-solar rotation through nonlinear feedback of the Lorentz force, and in dipole reversals and
periods of multi-polarity. Finally, we investigate the impact of surface conditions, such as differential rotation
and heat flux distribution, that may arise through contraction of the protostar and the interaction with its
accretion disc, on destabilization of initially dipole fields. With identified mechanisms of such destabilization,
competition of local shear and convection-generated helicity, we derive criteria for dipole stability based on the
ratio of shear and convective Rossby number, and assess the approaches to incorporate it in stellar evolution
code CESAM (Morel and Lebreton, 2008).

Figure 1: Illustration of the surface topology of magnetic field obtained in DNS. On the left: radial magnetic
field component at the surface at a moment in time. On the right: same field but filtered with a large-scale
spectral filter.
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Dielectrophoretic force induced convection within a
cylindrical annulus in various configurations.

M.H. Hamede∗†, J. Roller‡, A. Meyer§, V. Heuveline‡, Ch. Egbers†,

Research into enhancing heat transfer rates in different systems continues apace due to its necessity in a
variety of technical fields. A number of methodologies have been employed to achieve this objective, including
the utilization of dielectrophoretic (DEP) force, which, has the capacity to induce thermoelectric convection.
The application of an electric field to a dielectric fluid results in the polarization of fluid particles and the
subsequent occurrence of electrohydrodynamic (EHD) force. A high-frequency electric field, larger than the
inverse of the charge relaxation time of the fluid, prevents free charge accumulation, thereby leading the DEP
force to predominate over the Coulomb force. The DEP force can be conceptualized as an effect akin to
electric gravity, proportional to the gradient of the electrostatic energy stored per unit volume of the dielectric
fluid (Yoshikawa et al. , 2013). In this study, we experimentally investigated the artificially induced convection
by applying the dielectrophoretic force (DEP) in different flow configurations. In the initial configuration, two
static, concentric cylinders were aligned horizontally. The results demonstrated that the application of the
DEP force enhanced the existing natural convection cells in this configuration. At a certain threshold, the
flow tended to become unstable. It is evident that the enforcement of the existing convective cells leads to
a significant enhancement in the heat transfer rates. (Hamede et al. , 2024). In the second part of the
research, the experiment is set in the vertical orientation and we rotate the inner cylinder. Figure 1 shows
the effect of rotation on the flow instability for ∆T = 10K (Ra = αg∆Td3

νκ = 1.89 × 105 ) and Vp = 12kV

(VE = V0√
ρνκ/ε

= 2.186 × 103), with kinematic viscosity ν, thermal diffusivity κ, density ρ and electrical

permittivity ε. In the absence of rotation, when Taylor number Ta = Re
√
d/R1 = 0, with Re the Reynolds

number and R1 the radius of the inner cylinder, the natural convective cell is observed, indicating that the
flow remains stable even in the presence of an applied electric field. However, when the inner cylinder is set to
rotate, an axial flow mode emerges in the flow. It is noteworthy that this effect of rotation was not observed
in the cases involving lower applied electric fields. Consequently, it can be concluded that, for specific critical
values, rotation facilitates the emergence of thermo-electrohydrodynamic instability.
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Figure 1: Flow velocity field evaluated by PIV measurements at the radial-axial plane ∆T = 10K (Ra =
1.89 × 105 ) and Vp = 12kV (VE = 2.186 × 103). The velocity field was evaluated for different cases with
different Taylor number (Ta). The plots present the temporal averaged velocity magnitude multiplied by the
sign of the temporal averaged axial velocity component. The superimposed arrows indicate the direction of
the flow and its magnitude.
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Meridional heat flux derived from the Eady model and
a rotating annulus experiment: a comparison

U. Harlander∗†, A. M. Mancho‡, G. Meletti§

The Eady model is an elegant and simple tool to describe the fundamental aspects of baroclinic instability
(Eady , 1949). By this model, the linear dynamics of atmospheric cyclogenesis are captured qualitatively, i.e.
the development or strengthening of low-pressure regions in the atmosphere. Eady waves form weather fronts
that, later in the baroclinic life-cycle, occlude due to nonlinear processes. We show by comparison that the
correspondence with the Eady model is very close for the differentially heated rotating annulus, a common
laboratory experiment of baroclinic instability that has a broad range of applications concerning planetary
atmospheres (see e.g., Agaoglou et al. (2024), Harlander et al. (2024), Meletti et al. (2025)). Using
temperature and flow measurements at the surface, we focus on the radial heat flux since this flux is depth-
independent according to the Eady model. First, we consider the nonlinear saturation of the flux using the
spatial part of the Eady model streamfunction. Subsequently, we compare this flux with the experimental one.
We discuss in detail the role of the phase shift between surface temperature and flow. Finally, we speculate
about the possibility of estimating the 3D structure of oceanic vortices from surface temperature measurements
alone.

Figure 1: Original infrared image of the exponentially growing wave. Upper left: surface temperature 5.0
minutes after turning on the rotation. Bottom right: surface temperature 9.4 minutes after turning on the
rotation. Each picture is 33.3 seconds apart.
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Insights into the shear dynamics of the ice shelf ocean

interface from laboratory-scale simulations

S. Hartharn-Evans*�, C. Lloyd�, M. Carr�, A. Jenkins�,

Background

The melting of Antarctic ice shelves into the ocean is a major contributor to and key uncertainty of sea level
rise projections. Under Antarctic ice shelves, fresh meltwater moves upslope along the underside of the ice
shelf, setting up a strati�ed shear �ow with the warmer ocean beneath, reducing the transfer of heat between
ice and the ambient ocean (�gure 1 a). Such features are incredibly di�cult to access in situ, and so most
research into the transfer of heat and salt from the ocean to the ice itself has focussed on the use of larger
scale numerical modelling, laboratory experiments and analytical models to understand these processes, each
of which with their own assumptions, advantages and limitations.

Figure 1: Schematic of (a) the ice shelf-ocean boundary layer, where a fresh, cold meltwater layer is formed
from mixing of the warm, salty ocean and fresh, cold ice shelf. The plume propagates along the ice underside
upslope. (b) Snapshot of the shear instability in it's fully developed overturning state, visualised as density.

This work

We present some of the �rst direct numerical simulations (using the spectral parallel incompressible Navier-
Stokes solver, SPINS) of a small-scale idealised version of this �ow where a tilted domain is forced with �xed
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�Northumbria University, Newcastle upon Tyne, UK
�Loughborough University, Loughborough, UK
�Newcastle University, Newcastle upon Tyne, UK

41



densities at the upper and lower boundary to induce such a buoyant boundary shear current. In conjunction with
linear stability analysis of the pro�les we identify a previously unreported mixed mode shear instability consisting
of paired Kelvin Helmholtz-like instabilities above the velocity maximum and Holmboe-like instabilities (�gure
1b) which arises due to the interaction between a strati�ed layer and a strong, asymmetric plane Poiseuille
(channel) type shear pro�le (�gure 2).

Figure 2: Schematic representation of the paired mode shear instability (c) that results from a combination
of the Holmboe instability beneath the velocity maximum, and a Kelvin-Helmholtz instability above it. Black
lines indicate idealised density pro�les and blue lines indicate streamwise velocity, with vorticity shown in the
background, and the resulting sense of vortex rotation indicated.

The transition to turbulence (and mixing) is characterised by both the scouring wisp features of Holmboe
instability, and the overturning and secondary instability features of Kelvin-Helmholtz instability. It is unclear
how well this unusual route to turbulent mixing is represented in current models, highlighting the need for
further investigation into their impact on turbulent heat transfer and ice shelf melting. The restoring e�ect of
the boundary forcing indicates a �ow subject to a cyclical instability. It is unclear how well this unusual route
to turbulent mixing is represented in current models, highlighting the need for further investigation into their
impact on turbulent heat transfer and ice shelf melting.
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Simulating Large-Scale Vortices in Low Prandtl,
Rapidly Rotating Convections

R. Hinz  1   2, C. Guervilly2, P. Bushby 2

Back in 2016, the magnificent cyclonic structures were discovered at the polar regions of Jupiter by
NASA’s Juno spacecraft. While much is known about the zonal jets of Jupiter, the origin of these polar
cyclones have largely remained a mystery, despite how prominent these features are. They are vast in
size, long-lived, and beautifully arranged in clusters of five and eight circumpolar vortices around a
larger polar vortex. This number has not changed, aside from a small, fluctuating circumpolar vortex
appearing and dissipating occasionally (Figure 2).
The goal of our study is to explain the formation and structure of these Large-Scale Vortices (LSVs),
and how these interact with the convective layer of Jupiter’s atmosphere. It is believed that the Jovian
atmosphere has a Prandtl number (ratio of momentum diffusivity to thermal diffusivity) of around 0.01-
0.1.  At  this  value,  convective  flows become oscillatory,  and so  part  of  the  study is  to  determine
whether the LSVs formed are also oscillatory.
We perform 3D, periodic local box simulations to produce rapidly rotating (fixed, high Taylor number of
1e10), incompressible, low Prandtl Rayleigh-Bénard convective flows for various values of the Rayleigh
number (range of 105-108), and have currently observed four regimes: stationary flows; multiple, small,
“bursting” vortices; dipolar vortices; and LSVs. It is our hope to eventually introduce a magnetic friction
term, designed to mimic the Lorentz force without performing a full MHD model.
We have also discovered a new regime, dubbed “bursting”, which we are currently trying to ascertain
the conditions when this occurs. We have found only one case so far at Pr = 0.25, Ra = 8e5, and Ta =
1e10, but work is being done to see if this effect occurs at other values (Figure 1). We believe that by
pursuing this, we will discover the process behind the oscillating vortex on the south pole.

Figure 1: Time series of the mean effective
Taylor number (normalised by the set Taylor

number) for the oscillatory case of Pr = 0.025,
Ra = 8e5, and Ta = 1e10.

Figure 2: IR image of the southern pole of
Jupiter,captured by NASA’s Juno

spacecraft. The green arrow points out
the oscillating vortex. (Mura 2021, 2022)

1 Corresponding author: b8063820@newcastle.ac.uk
2  Newcastle University
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Melting of a vertical cylinder including salinity

Sander G. Huisman∗†, Simen T. Bootsma†, Dehao Xu†, Detlef Lohse†

The accelerated melting of glaciers and ice sheets becomes an increasing concern as global warming persists.
Rapid melting can lead to a weakening of global ocean currents, an increase of sea level rise, and a decrease of
albedo which further amplifies global warming. Still, the physical mechanisms that govern the melting of ice
are not well understood on a fundamental level (Cenedese and Straneo , 2023). Here, we perform controlled
laboratory experiments in a cold room facility to enhance our understanding of the interaction between the
melting dynamics of ice in saline water and the resulting natural convective flow. Specifically, we investigate
the morphology evolution and melt rate of a vertical ice cylinder with varying ambient salinity (S∞), while
keeping the ambient temperature fixed at T∞ = 2 ◦C. Due to the density anomaly of water, there exist several
flow regimes for a melting vertical ice surface in water, depending on the ambient temperature and salinity
(Carey and Gebhart , 1982; Josberger and Martin , 1981). For T∞ = 2 ◦C, water is below the maximum
density temperature for low ambient salinity, such that both thermal and saline buoyancy drive an upward flow.
However, for S∞ > 10 g/kg, thermal buoyancy acts downwards, resulting in a competition between thermal
and saline buoyancy. This leads to a complex bidirectional flow that can affect the melting of an ice object in
a non-trivial way (Figure 1). Overall, understanding the physics of melting in such small-scale experiments at
relevant ambient conditions serves as a step toward improving predictions of future melt rates of glaciers and
ice sheets.

(a)t = 0 h (b)t = 2 h (c) t = 4 h (d)t = 6 h (e) t = 8 h

Figure 1: Evolution of a melting ice cylinder suspended vertically from a holder. The ambient temperature
and salinity are T∞ = 2 ◦C and S∞ = 15 g/kg, respectively. The initial diameter of the cylinder is 5 cm.
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Exact solutions and instability for geophysical waves at
arbitrary latitude

D. Ionescu-Kruse∗

We survey some exact solutions in the Lagrangian framework, representing waves at arbitrary latitude that
propagate eastward or westward above a flow which accommodates a constant underlying background current,
waves that can be both in the direction of the current and in the opposite direction. These waves are linearly
unstable to short-wavelength perturbations, if their steepness exceeds a specific threshold. This threshold
depends on the latitude and the strength of the underlying current.
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Supercritical Nature of Helical Magnetorotational
Instability in Taylor–Couette Flow

M. Ishaq †, J. Priede∗†

Abstract

The magnetorotational instability (MRI) is a mechanism by which the magnetic field can destabilize a
hydrodynamically stable flow of a conducting fluid without altering its velocity distribution. This instability
was first discovered theoretically in cylindrical Taylor-Couette (TC) flow of perfectly conducting fluid
subject to an axial magnetic field. Extensively investigated as a feasible instability mechanism of Keplerian
velocity distribution in accretion disks, the MRI is thought to be behind the formation of stars and entire
galaxies on the observed timescales. This hypothesis has motivated not only numerous theoretical studies
but also several attempts to reproduce the MRI in the laboratory. A major challenge to such experiments is
posed by the parameter known as the magnetic Reynolds number Rm, which is required to be at least ∼ 10
for the MRI to set in. For a typical liquid metal, characterized by a small magnetic Prandtl number Pm ∼
10−5 − 10−6, this translates into a large hydrodynamic Reynolds number Re = Rm/Pm ∼ 106 − 107. At
such large Reynolds numbers, the flow on which the MRI is expected to develop may become turbulent
due to purely hydrodynamic instabilities. A solution to this problem was suggested by Hollerbach and
Rüdiger (PRL 95, 124501, 2005), who discovered that a magnetorotational-type instability can take place
in cylindrical TC flow at Re ∼ 103 when the imposed magnetic field is helical rather than purely axial as
for the standard MRI (SMRI).
So far HMRI has been studied mostly in the linear regime which is limited to sufficiently small amplitude
disurbances. Not so much is known about the non-linear evolution of HMRI which in contrast to the
SMRI is an inherently resistive instability. It means that HMRI is dominated by the magnetic diffusion
and thus fully captured by the so-called inductionless (low-Rm) approximation which formally corresponds
to Pm = 0. As a result, HMRI unlike SMRI affects only a limited range of hydrodynamic Reynolds
numbers. Namely, besides the lower Rec above which HMRI sets in, there is also an upper critical
Reynolds number above which the flow re-stabilizes. This is due to the quadratically nonlinear inertia
which starts to dominate over the linear Lorentz force in the Pm → 0 limit. Besides being limited
to relatively small hydrodynamic Reynolds numbers, the HMRI can destabilise only flows with sufficiently
steep radial rotation profiles which, however, do not reach up the astrophysically relevant Keplerian velocity
distribution.
Astrophysical relevance of HMRI critically depends on its ability to extend to subcritical parameter range.
We address this question in the present study by carrying out a weakly non-linear stability analysis of
HMRI. The Landau constants, which we compute using a highly accurate and efficient algorithm based
on the Chebyshev collocation method, indicate that HMRI is a supercritical instability. We also compute
strongly non-linear traveling-wave states which confirm the predictions of weakly non-linear analysis.
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Interaction of Inertial Waves with Vortices in Rotating
Stratified Flows

H. Kafiabad∗ †, J. Vanneste ‡, W. R. Young §

Anticyclonic vortices in the ocean interact with near-inertial waves, leading to modifications in both wave
and vortex dynamics. On the wave side, near-inertial wave energy becomes focused and trapped within
anticyclones, elevating energy levels in the vortex core (see figure 1). This process is partly explained by the
presence of trapped near-inertial eigenmodes, which are readily excited by an initial wave with a horizontal
scale much larger than the vortex radius. We investigate this mechanism using a reduced model of near-inertial
dynamics and validate its theoretical predictions against high-resolution numerical simulations of the three-
dimensional Boussinesq equations. In the linear approximation, the model predicts eigenmode frequencies,
spatial structures, and a near-inertial wave energy signature characterized by an approximately time-periodic,
azimuthally invariant pattern (Kafiabad et al, JPO , 2021). On the vortex side, the anticyclone undergoes
modifications governed by wave-averaged geostrophic balance, where wave-induced feedback alters potential
vorticity through a contribution proportional to the Laplacian of the kinetic energy density of the waves. Using
direct numerical simulations of the Boussinesq equations, we quantitatively assess the ability of wave-averaged
geostrophic balance theory to describe the modified vortex dynamics (Kafiabad et al, JFM , 2021).

Figure 1: Horizontal slices of wave kinetic energy for a high-resolution Boussinesq simulation initialised by an
inertial wave and a Gaussian vortex.
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Numerical Study of Thermomagnetic Convection in a 

Ferrofluid inside a Differentially Heated Taylor-Couette System 

C. Kang1 2, I. Mutabazi3, A. Meyer3

Abstract 

The flow stability of a ferrofluid with a radial temperature gradient and a magnetic field is investigated by a direct 

numerical simulation. The inner cylinder is rotating while the outer one is fixed. The inhomogeneous magnetic field 

created by a stack of magnets inserted inside the inner cylinder interacts with the magnetization of the ferrofluid and 

produces the Kelvin force. The latter contains, besides a conservative term, a nonconservative part which can be seen as 

a magnetic buoyancy with a corresponding magnetic gravity. The magnetic buoyancy generates a thermomagnetic 

convection in the cylindrical annulus at a critical value of the temperature difference. The flow is controlled by the Taylor 

number Ta that measures the intensity of the centrifugal force and the magnetic Rayleigh number Ram that indicates 

the intensity of the magnetic force. For each value of Ram, the instability threshold (Tac) is determined and compared 

with that predicted by the linear stability analysis (Meyer et al., 2022). Nonlinear coefficients of the Landau equation are 

computed to reveal the nature of the transition (supercritical or subcritical bifurcations). The momentum and heat 

transfer coefficients are obtained to evaluate the efficiency of the flow induced by the magnetic force in the momentum 

and energy transfer. 

(a) (b) (c)

Figure 1: (a) Schematic representation and contours of (b) azimuthal vorticity and (c) temperature with velocity vectors 

on a r-z plane for Ta = 32 and Ram=1000 with Pr = 15. 
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A theory to explain tropical cyclone kinetic energy
spectra

Boris Galperin∗, Alexander K. Nickerson∗, Gregory P. King††‡, Jun A. Zhang‡§

Kinetic energy spectra calculated from winds measured by research aircraft flying through tropical cyclones
(TC) were found to vary with storm region and intensity Vonich and Hakim (2018). We have developed a
theory to explain these variations and validated them with an observational analysis of our own.

According to the theory, the TC vortex can be thought of as a system undergoing a superposition of
planetary and cyclostrophic rotations represented by an effective Coriolis parameter, f̃ = f̂ + f , where f̂ =
2Umax/Rmw, Rmw is the radius of maximum wind, and Umax is the azimuthal wind speed at that radius. f̂
far exceeds its planetary counterpart for all storms and its impact increases with storm intensity. Furthermore,
for sufficiently intense storms a cyclostrophic β-effect (β̂) develops in the inner core that sustains vortex Rossby
waves. Horizontal turbulence in such system can be quantified by a two-dimensional anisotropic spectrum that
shows a coexistence of three ranges: Kolmogorov at small scales, while at large scales spectral amplitudes
are proportional to f̃2 (classified as peristrophic), and a transverse spectrum amplitude proportional to β̂2

(classified as zonostrophic).

Our observational analysis shows that for low intensity storms, spectral amplitudes are purely peristrophic.
With increasing storm intensity, the spectra change to mixed peristrophic-zonostrophic, and then to predomi-
nantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets.
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Local monotonic and oscillatory instabilities in

di�erentially heated visco-di�usive swirling �ows

O.N. Kirillov*�, I. Mutabazi�

Hydrodynamic modeling describes swirling �ows as arising from the combined e�ects of rotation and
shear in two orthogonal directions. The base state of these �ows consists of azimuthal and axial velocity
components, occurring in either con�ned geometries (common in engineering applications) or open geometries
(typical of natural phenomena), see Figure 1. The stability of swirling �ows and their transition to turbulence
pose a signi�cant scienti�c challenge, especially when factors like temperature gradients, strati�cation, or
electromagnetic �elds are involved. In this talk, based on the works (Kirillov, 2025; Kirillov & Mutabazi,
2025, 2024, 2017), we focus on the instabilities of swirling �ows with a radial temperature gradient, crucial
in industrial processes like combustion (Candel et al, 2014) and natural phenomena like tropical cyclones
(Emanuel, 2018), tornadoes, and astrophysical �ows (Tziotziou et al., 2023).

Figure 1: The helical base state (Baroclinic Couette Flow, BCF) as a superposition of the circular Couette
�ow vB(R) and an axial annular �ow wB(R) in a di�erentially heated cylindrical annulus.

Adapting local geometrical optics stability analysis (Kirillov, 2025) to visco-thermodi�usive swirling �ows
with a radial temperature gradient, we found both monotonic instability�combining the Ludwieg-Eckho�-
Leibovich-Stewartson (LELS) (Leibovich and Stewartson, 1983) and Goldreich-Schubert-Fricke (GSF) insta-
bilities (Kirillov & Mutabazi, 2024)�and a visco-thermodi�usive oscillatory instability (Kirillov & Mutabazi,
2025), Figure 2. The latter extends the McIntyre instability (McIntyre, 1970), previously known only in purely
azimuthal rotating �ows, to swirling �ows. We derived a novel analytical instability criterion for non-isothermal
visco-thermodi�usive swirling �ows, unifying the LELS and GSF criteria, and developed an algorithm to predict
whether oscillatory or stationary instability dominates, depending on parameters like the Prandtl number (Pr),
axial Grashof number (Gr), and azimuthal Reynolds number (Re). The theory is applied to the helical base
�ow of an incompressible visco-thermodi�usive �uid in a di�erentially rotating vertical cylindrical annulus with
radial temperature gradient and natural gravity�Baroclinic Couette Flow, Figures 1 and 2.
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Figure 2: Green-shaded regions represent stationary (LELS-GSF) instability domains touching the thick blue
envelope, while purple-shaded regions above them correspond to oscillatory (McIntyre) instability domains
touching the thick red envelope. Dashed black lines indicate neutral stability curves for axial wavenumbers
kz > 0, and solid black lines indicate neutral stability curves for kz < 0. (a) Rayleigh-unstable BCF (η = 0.8,
µ = 0) with radial wavenumber kr = 4

√
2, Prandtl number Pr = 5.5, outward heating (γ = 0.0004), and

kz = ±0.6,±2,±4; (b) Rayleigh-stable BCF (η = 0.8, µ = 0.8) with kr = 3
√
2, Pr = 5.5, γ = 0.01, and

kz = ±0.1,±0.5,±0.6,±1.5,±3; (c) Rayleigh-unstable BCF (η = 0.8, µ = 0.62) with kr = 4
√
2, Pr = 4,

γ = 0.01, and kz = ±0.6,±2,±4; (d) Rayleigh-stable BCF with a quasi-Keplerian azimuthal velocity pro�le
(η = 0.99, µ = η3/2), kr = 2

√
2, Pr = 0.5, inward heating (γ = −0.01), and kz = ±0.2,±0.5,±1,±2,±3.

Here γ = α(T1 − T2), where α is the thermal expansion coe�cient, T1 and T2 are the temperatures of the
inner and outer cylinders, η = R1

R2
, and µ = Ω2

Ω1
, where R1, Ω1 and R2, Ω2 are the radius and the angular

velocity of the inner and outer cylinder, respectively (Kirillov & Mutabazi, 2025).
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Emergence of triplet streaks near the inner wall in MHD 
turbulent Taylor-Couette flow with end walls 

H. Kobayashi1 2, T. Hasebe3, K. Namba3, T. Fujino3, H. Takana4,

Abstract: 

We numerically investigate the influence of magnetohydrodynamic (MHD) interaction on near-wall turbulence in Taylor-Couette 
(TC) flow. A liquid metal is assumed as a working fluid and is confined in a container covered by the inner, outer, top, and bottom 
walls. This configuration has been examined for the MHD control of rotational speed of wind turbine shaft (Takana and Tanida 
2017, Hasebe et al. 2023). The rotating shaft is connected to the inner cylinder, and the liquid metal surrounds the inner cylinder. 
The inner cylinder wall rotates, and the other walls are at rest. The magnetic field is applied in the axial direction. The Lorenz force 
acts against the flow and suppresses the turbulence (Kobayashi et al. 2021). The Hartmann number is defined by the ratio of the 
Lorentz force to the viscous force and expresses the strength of the MHD interaction.  

Incompressible MHD flows are considered. The governing equations consist of the continuity equation, the Navier-Stokes 
equations with Lorentz force, the Maxwell equations at low magnetic Reynolds number, and the generalized Ohm’s law. The 
second-order Adams-Bashforth method and a second-order central finite difference method are used for time matching and spatial 
discretization, respectively. The SMAC scheme is utilized for coupling between velocity and pressure. The Poisson equations for 
pressure and electric potential are solved by using a Bi-CGSTAB method. We conduct a large-eddy simulation, and the subgrid-
scale stress tensor is modeled by the coherent structure model (Kobayashi 2005), which can predict the laminarization by the Lorentz 
force and is suitable for the MHD flows. The computational domain in the azimuthal direction is set to 2π. The aspect ratio in the 
r-z cross-section is set to 1.0, and the radius ratio η is set to 0.5. The Hartmann number Ha is proportional to the magnetic flux
density. The periodic boundary condition is used in the azimuthal direction, and no-slip boundary conditions are applied to the top,
bottom, inner, and outer walls. All walls are assumed to the insulating walls.

Figure 1 shows the instantaneous azimuthal and radial velocity distributions for Reynolds number Re=8000 at Ha=0, 70, and 100 
near the inner wall. High- and low-speed streaks are seen in Fig. 1(a), left, and are produced by a pair of vortices with inflow and 
outflow as shown in Fig. 1(a), right. At Ha=70, fine streaks near the top and bottom walls are suppressed by the Lorentz force. At 
Ha=100, those fine streaks are completely suppressed, and high-speed spiral streaks coming from the top and bottom walls are 
observed. We can understand that two types of streaks exist in the TC flow in a container at Ha=0 of Fig. 1(a). One is a fine streak 
generated by Görtler vortices, and the other is a high-speed spiral streak coming from the corner between inner and top (or bottom) 
walls (Kobayashi et al. 2025).  As seen in Fig. 1(c), the triplet high-speed streak composed of two spiral streaks and the centerline 
streak is a good marker to understand the criterion of MHD interaction. We investigate what determines the criterion hereafter.  

Figure 2 exhibits the instantaneous azimuthal and radial velocity distributions at Re=5000 and Ha=62.5, Re=8000 and Ha=100, 
and Re=10000 and Ha=125 near the inner wall. We can observe the triplet streaks for all the figures, although the width of the streak 
becomes finer for higher Reynolds numbers. The criterion where the triplet steaks are generated is defined as Hr =Ha/Re×103 =12.5. 
Therefore, we can conclude that the criterion of MHD interaction is expressed by Hr for the MHD turbulent state near the inner 
wall.  

We will present and discuss the effect of the radius ratio on MHD interaction and streaks at the conference. This effect is 
particularly interesting when considering centrifugal instability. The above criterion is modified using Taylor number Ta as follows: 
Ht= Ha/Ta1/2×103 =12.5, where Ta=Re2(1/η-1).  

1 Corresponding author: hkobayas@keio.jp 
2 Keio University, Yokohama, Japan 
3 University of Tsukuba, Tsukuba, Japan 
4 Tohoku University, Sendai, Japan 

53



Figure 1: Instantaneous azimuthal (left) and radial velocity (right) distributions for Re=8000 at (a) Ha=0, (b) Ha=70, and (c) 
Ha=100 in the vicinity of the inner wall. 

Figure 2: Instantaneous azimuthal (left) and radial velocity (right) distributions at (a) Re=5000 and Ha=62.5, (b) Re=8000 and 
Ha=100, and (c) Re=10000 and Ha=125 in the vicinity of the inner wall. 
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Mean Flow Generation in Rotating Spherical Layers Under 
Colored Noise 

O. Krivonosova1, M. Gritsevich2, D. Zhilenko1

The presence of random fluctuations over time is a fundamental characteristic of most natural processes and 

systems. Random variations in rotational velocity can be considered external noise that influences large-scale flows in 

both the atmosphere and the Earth's liquid core. In this study we numerically investigate how noise alters flow 

intensity, focusing on axisymmetric flows of viscous, incompressible fluid in spherical layers, where the boundaries 

rotate with equal angular velocities. Building on previous experiments (Zhilenko et al., 2018), random fluctuations 

with zero mean value are introduced into the otherwise constant rotation velocity of the inner sphere, thereby 

incorporating noise into the flow. Calculations were conducted for layers with relative thicknesses δ = 1 and δ = 1.76, 

and Reynolds numbers Re = 2000 and Re = 4000, based on the outer boundary parameters. Two types of noise were 

considered:  = 0.1 and  = 1, where  defines the slope of the noise spectrum 1/f . The results demonstrate that 

increasing the noise amplitude, N, leads to an increase in the time-averaged values of the azimuthal and meridional 

components of flow kinetic energy. This effect was previously observed when adding white noise (Krivonosova et al., 

2023). In this study, for all noise spectra, relative thicknesses, and Reynolds numbers analyzed, we found that at 

equivalent noise amplitudes, the relative increase in the meridional kinetic energy component is several orders of 

magnitude higher than that of the azimuthal component. Conversely, the opposite trend is observed for the root 

mean square (RMS) deviations of kinetic energy components: the increase in RMS deviations of the azimuthal 

component is several orders of magnitude higher than that of the meridional component at equivalent noise 

amplitudes. We demonstrate that relative flow parameters—including frictional moments on the outer sphere, 

fluctuations, and mean values of the azimuthal and meridional kinetic energy components—follow power-law 

relationships with respect to the noise amplitude, N. All exponents fall within the range of 1 to 2. Moreover, this 

scaling appears to be independent of δ, the Reynolds number, and the noise spectrum type. A simplified analytical 

model qualitatively aligns with the numerical results, indicating that the slope of the noise spectrum does not affect 

the nature of energy component variations. We hypothesize that this power-law scaling of flow parameters with noise 

amplitude will extend beyond colored noise to periodic fluctuations in rotational velocity. Future research could focus 

on investigating this hypothesis. 

We sincerely thank Peter Read for valuable discussions and insightful comments, which contributed to the 

development of this work. 
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Stability of a material interface in a two-phase system
with a free surface

J. Labarbe∗†

The well-known Rayleigh–Taylor instability describes the stability of an interface between two liquids of
distinct densities but without surface properties (Rayleigh , 1883; Taylor , 1950; Chandrasekhar , 1961). Al-
though the classical stability criterion for inviscid motionless layers is well-known, it still remains unknown
whether the interface can be excited when coupled to an external forcing (e.g. a second moving interface).
It has recently been demonstrated that the Rayleigh–Taylor phenomenon can be inhibited if the interface is
allowed to slip along the side walls of the domain and if surface tension is strong enough (Wilke , 2022).
On the contrary, interfacial instability has been established in the context of hydrochemical dynamics when
considering surface tension gradients and viscosity (Ibanez and Velarde , 1977). More generally in most studies
involving fluid interfaces, the surface rheology is often neglected on account of its small density. Nevertheless,
in practice, there are several applications that necessitate the rheological behaviour of the interface in order
to accurately model the dynamics of two-phase flows. To allow for such effects to be considered, a general
mathematical description of the physics at the interface is required. For this reason, local formulations of
jump conditions across a Newtonian interface have been derived within the most general context (Scriven ,
1960; Delhaye , 1974). However, considering a two-phase system when the two layers are not semi-infinite is
notoriously difficult to study (Sternling and Scriven , 1959).

This study examines the stability of a motionless two-phase fluid layer when the interface incorporates surface
properties and interacts with a free surface located above. We introduce the exact jump conditions at the
interface (the so-called Boussinesq–Scriven conditions, cf. Scriven (1960); Delhaye (1974)) and we solve the
associated boundary eigenvalue problem by means of analytical and numerical methods. The spectral analysis
demonstrates the onset of a new interfacial instability when the free surface and the material properties of the
interface are present simultaneously. Remarkably, this instability takes place within the domain of stability of
the Rayleigh–Taylor mechanism, i.e. when the acceleration due to gravity acts from the lighter to the heavier
fluid (Rayleigh , 1883; Taylor , 1950; Chandrasekhar , 1961).

Figure 1: Sketch of a two-phase system with a material interface enclosed by two viscous fluid layers while a
free surface is located above. The system is not represented at rest intentionally to highlight the presence of
interfacial instability.
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Taylor-Couette flow of complex suspensions:
particle-polymer interactions, instability and mixing

T. Lacassagne∗†, C. Carré †, M. Moazzen †, S.A. Bahrani †,

Suspensions of solid particles in Newtonian or non-Newtonian liquids are ubiquitous in nature and industrial
processes. These fluids exhibit a wide range of nonlinear dynamics, driven by inertia or the complex rheology
of the suspending phase, complicating the control of their stability, mixing, and heat transfer, as well as the
prediction of process performance.
In this context, recent studies have illustrated and revived the potential of the canonical Taylor-Couette flow for
investigating hydrodynamic instabilities and the dynamics of complex fluids, including viscoelastic and elasto-
inertial flows (Boulafentis et al. , 2023; Song et al. , 2023) and non-colloidal particle suspension flows (Baroudi
et al. , 2023). In this contribution, we use Taylor-Couette flow to combine those two complexity factors and
explore the dynamics of complex suspensions composed of (mostly non-colloidal) particles in non-Newtonian
viscoelastic base fluids. Direct visualization of the flow structure (figure 1, central part) is combined with
torque measurements on the rotating inner cylinder (the outer one being stationary) to identify transitions to
inertial or elasto-inertial regimes and to characterize the associated friction dynamics.

Figure 1: Taylor-Couette flow of complex suspensions: detection of elasto-inertial transitions using flow
visualization and torque measurement (center and bottom right), quantification of polymer degradation (top
right), and laser induced fluorescence measurement of mixing times (left).

As initially suggested in (Lacassagne et al. , 2021), a notable observation is that at low particle volume
fractions (dilute regime), particle addition promotes earlier onset of instabilities and transition to elasto-
inertial turbulence (EIT) in terms of control parameters (Reynolds or Weissenberg numbers). However, this
trend reverses in the semi-dilute regime, where particles either stabilize the flow (Lacassagne et al. , 2021) or
completely suppress EIT (Carré et al. , 2024).
An elasto-inertial dissipation (EID - figure 1, bottom right part) mechanism is uncovered (Carré et al. ,
2024), and its physical origin is discussed here through the lens of local particle-polymer interactions. These
interactions may be reversible or lead to irreversible polymer degradation, both strongly promoted by inter-
particle contacts at sufficient particle concentrations. To probe this latter mechanism, the degradation rate of
particle-laden viscoelastic fluids is systematically measured as a function of particle volume fraction and shear
rate, revealing that polymer degradation is indeed enhanced in the semi-dilute regime (figure 1, top right).

∗Corresponding author: tom.lacassagne@imt-nord-europe.fr
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Finally, laser-induced fluorescence measurements are conducted to visualize passive scalar transport and quan-
tify mixing times across various complex suspensions and flow regimes (figure 1, left part). This approach
enables assessment of the potential of such complex suspensions for mixing and conducto-convective transfer
intensification, in comparison with suspensions of colloidal or non-colloidal particles in Newtonian solvents and
with particle-free viscoelastic fluids, opening prospects for the formulation of innovative heat transfer fluids.
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Macroscopic pilot-wave dynamics

in density-strati�ed �uids

P. Le Gal*�, S. Gsell�

Inspired by bouncing drop experiments that revealed how macroscopic systems can exhibit wave-particle
properties previously thought to be exclusive to quantum systems (see Couder et al. (2005), Fort et al. (2006),
Bush (2015)), we introduce here a new wave-particle system based on internal gravity waves propagating in
density-strati�ed �uids. Recent experiments by Le Gal et al. (2022) on particles (called ludions) oscillating
in such a �uid medium suggest that wave-particle interactions can induce symmetry breaking, leading to
spontaneous self-propulsion of the particle in the horizontal plane. Here we use direct two-dimensional lattice
Boltzmann / immersed-boundary simulations (see Gsell et al. (2020)) to decipher the wave-particle interactions
underlying this dynamics. Figure 1 illustrates the self-propulsion of the ludion wrapped in its inernal wave
�eld.

Figure 1: Snapshot from a numerical simulation using the Lattice Boltzmann Method of a self-propelled
ludion (here towards the right) in a density-strati�ed �uid domain (here in a 2D periodic domain with a
vertical oscillation frequency half the Buoyancy frequency: ω/N = 0.5).

To explain this propulsion, we propose a minimal hydrodynamic theory showing that this instability can
be explained by a Doppler force emerging from interactions between the ludion and its own wave �eld. We
demonstrate that the Doppler e�ect breaks the forward/backward symmetry of the system by modifying the
angles of the internal gravity wave vectors and thus leads to the ludion self-propulsion. We validate our
theoretical predictions using direct numerical simulations and new experiments which con�rm the predicted
e�ect and show that the growth of the instability is determined by the particle oscillation amplitude.

In wall-bounded domains, the re�ected internal waves react back on the ludion creating a radiative force
on it. We have measured this force at di�erent positions of the ludion along the horizontal axis and we show
that a Casimir-like potential rapidly develops and constrains the particle motion as can be seen on �gure 2.

Despite the presence of the Doppler force, the Casimir-like potential governs the ludion long-term dynamics,
leading to capture the ludion in �xed points for the simplest cases (see Figure 3-a) or chaotic attractors (see
Figure 3-b) near the potential wells (see Figure 2).

Our �ndings establish the ludion as a novel hydrodynamic pilot-wave system, o�ering a new platform for
exploring macroscopic wave-particle duality, particularly in three-dimensional con�gurations to be explored in
the future.

*Corresponding author: patrice.LE-GAL@univ-amu.fr
�Aix Marseille Univ., CNRS, Centrale Med., Marseille, France
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Figure 2: In a bounded domain, the waves re�ect o� the walls and create a Casimir-like potential (here for
ω/N = 0.5) capable of trapping the ludion, regardless of its original location along the horizontal direction.

a) b)

Figure 3: Some trajectories of the ludion self-propelled by its own internal gravity waves and trapped by the
Casimir-like potential generated by the wave re�ections on the distant walls. The Reynolds number based on
the vertical oscillations is Re = 25 and the ratio of the forcing frequency to the Brunt�Väisälä frequency is
ω/N = 0.5 in a) and ω/N = 0.9 in b).

References

Y. Couder, S. Protière, E. Fort and A. Boudaoud.(2005). "Walking and orbiting droplets", Nature, 437, 208.

Y. Couder and E. Fort. (2006). "Single-particle di�raction and interference at a macroscopic scale",Phys. Rev. Lett.,
97,154101.

J. W. M. Bush. (2015). " Pilot-wave hydrodynamics", Ann. Rev. Fluid Mech., 47, 269.

P. Le Gal, B. Morales Castillo, S. Hernandez-Zapata and G. Ruiz Chavarria, G. (2022). "Swimming of a ludion in a
strati�ed sea", J. Fluid Mech., 931, A14.

S. Gsell, U. D'Ortona and J. Favier. (2020). "xplicit and viscosity-independent immersed-boundary scheme for the
lattice Boltzmann method", Phys. Rev. E, 101, 023309.

61



Turbulent zonal jets interacting with local topography:
an experimental study

D. Lemasquerier∗†, C. David‡, R. Monville‡, J. Aurnou‡

Zonal jets are coherent east-west winds or currents observed –or expected to emerge– in many planetary
fluid layers, from the Earth’s oceans and atmosphere, to the atmospheres of gas giants, the subsurface oceans
of icy moons and the liquid metallic cores of telluric planets. In many of these systems, zonal jets interact
with a solid boundary with topography: the bathymetry in Earth’s oceans is known to influence the dynamics
of the Antarctic Circumpolar Current, flows in liquid cores interact with the topography at the Core-Mantle
boundary, and icy moon oceans are in direct contact with a global ice crust of spatially varying thickness.

In this talk, I will present laboratory experiments to study the interaction between turbulent zonal jets
and a local topography. We use the Coreaboloid device at UCLA(Lonner et al., , 2022) to robustly produce
turbulent zonal jets. The setup is a 75cm-diameter water tank rotating at speeds up to 72 revolutions per
minute. The deflection of the free surface due to the fast rotation provides a strong topographic β-effect.
The flow is forced by thermal convection, driven by starting the experiment with hot water, and cooling the
inner cylinder with a block of ice. To simulate a local topography, we attach acrylic disks of different radii
and heights on the bottom plate. We visualise the flow using 1) a thermal infrared camera to image the
temperature field at the free surface 2) particle image velocimetry (PIV) on a horizontal laser plane and 3)
ultrasonic doppler velocimetry (UDV) along three chords. Preliminary results show the formation of stationary
Rossby waves downstream of the topography (Figure 1), that feed back on the amplitude, number and position
of zonal jets.

Figure 1: Time-averaged velocity fields obtained from PIV in a typical experiment at 72 rpm with a 6cm-wide,
4.5cm-high topography. The black circle is the horizontal position of the topography. Only a fraction of the
total cylinder is visible. Left: Azimuthal component of the velocity. Red is prograde (same direction as the
background rotation), blue is retrograde. Right: Radial component of the velocity. Red is outward, blue is
inward.
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Transition to ultimate Taylor-Couette turbulence

Detlef Lohse∗†, Luuk Blaauw ‡, Sander G. Huisman §

We provide experimental evidence that the transition towards the ultimate turbulence regime of Taylor-
Couette flow is of non-normal-nonlinear nature, showing sensitive dependences on distortions and being hys-
teretic and subcritical.

1 Introduction
The Rayleigh–Bénard (RB) system (1; 2; 3; 4) – the flow in a container heated from below and cooled from
above – and the Taylor–Couette (TC) system (5; 6) – the flow between two coaxial co- or counterrotating
cylinders – are perhaps the two most popular playgrounds to test new concepts in physics of fluids, be it
instabilities, pattern formation, or turbulence. This also holds for ultimate turbulence (7; 8; 9; 10), i.e., the
state of turbulence in which also the boundary layers have become fully turbulent, displaying a logarithmic
mean velocity profile and enhanced transport properties of the flow, either for the heat in RB flow or for
the angular velocity in TC flow. While in RB flow it has been difficult to reach the ultimate state, due to
the inefficiency of thermal driving, in TC it is much easier (11), due to the efficiency of mechanical driving.
Therefore the TC system offers great opportunities to study the nature of the transition towards the ultimate
regime in detail. This is what we do in this work.

For large enough driving, in any flow the boundary layers of (laminar) Prandtl–Blasius type get unstable
and undergo a transition towards turbulent, so-called Prandtl–von Karman boundary layers, with a logarithmic
velocity profile. This transition also occurs in RB and in TC flow (12; 4). The transition is in direct analogy
to the laminar-to-turbulent transitions of the boundary layer around a plate or within a pipe. It is subcritical
(meaning that around the transition different states coexist) and of non-normal/nonlinear nature and can
arise when (i) the shear is sufficiently strong and (ii) there are large enough disturbances (such as small
wall roughnesses, inhomogeneities of the temperature boundary conditions, vibrations, etc.) to trigger the
onset (“double threshold behavior”) (13) so that the system “jumps” from one state to another. Typically,
such an onset of the shear instability in a wall-parallel flow happens when the shear Reynolds number Res
exceeds a value of about 420, as estimated by Walter Tollmien almost a century ago. With this, for a Prandtl
number of Pr ≈ 0.7 and an aspect ratio of Γ ∼ 1, the critical Rayleigh number for the onset of the ultimate
regime in RB convection can be estimated to occur at a Rayleigh number Ra around 1014 (14), but given the
double-threshold feature of the transition, for different small disturbances it may also be earlier or later. In
TC flow, the same critical shear Reynolds number <s ≈ 420 is already achieved around a Taylor number of
T a ∼ 3× 108.

2 Non-normal-nonlinear nature of the transitions towards the ul-
timate turbulence regime in TC flow

In this work we have analysed the detailed nature of the transition towards ultimate turbulence in TC flow.
The main result is the dimensionless angular velocity transport Nuω as function of T a. While for weak driving
the local slope γ in an effective scaling law Nuω ∼ T aγ is smaller than 1/3 (“classical regime”), beyond the
transition around T a ∼ 3 × 108 we find γ > 1/3, namely γ ≈ 0.39 (11). The important point here is to
show the nature of this transition: When slowly increasing the driving strength T a, the transport property
Nuω suddenly jumps to a higher value, at a non-reproducible value of T a, in a range of T a between 2.5× 108

and ∼ 4 × 108. Moreover, when slowly reducing T a again, Nuω does not jump back to the values before
∗Corresponding author: d.lohse@utwente.nl
†University of Twente
‡University of Twente
§University of Twente
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the system underwent the transition, but stays at a higher value (green curves in the figure). Both properties
support the non-normal-nonlinear nature of the transition. We doubled-checked that the hysteretic properties
are not caused by the torque sensor, which is used to deduce Nuω, but that they are really a property of the
flow, as the same features of the transition are also seen in measurements of the Reynolds number, using Laser
Doppler velocimetry. We note that in addition to the question on whether the flow has turbulent type BLs
above the transition or laminar type BLs below the transition, also the number of vertically stacked Taylor
rolls can change (16), which presumably is the reason why Nuω does not recover at the value it had prior to
the transitions into and out of the ultimate regime.

In conclusion, our experimental results give strong evidence that the transition towards ultimate TC tur-
bulence is of non-normal-nonlinear nature. Further studies are necessary to further explore the transition and
in particular to check how it can best be triggered by controlled distortions and how these distortions then
decay, depending on the value of the control parameter T a. Exciting and versatile times to better understand
the details of the non-normal-nonlinear transition to ultimate turbulence in TC and RB flow are ahead of us.
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Rayleigh-Taylor Instability Drives Axial Band
Formation in Granular Flow

U. D’Ortona∗, R. M. Lueptow†‡, N. Thomas∗

Rayleigh-Taylor (RT) instabilities arise when a denser fluid is placed atop a lighter one in a gravitational
field. The horizontal interface between the layers becomes wavy, eventually resulting in downward high density
plumes and upward low density plumes. Rayleigh-Taylor instabilities can also occur in granular flows. Unlike
the fluid instability, which occurs under quiescent conditions, the granular material must be flowing for the
instability to occur (static granular layers would remain unchanged without the input of energy via the flow).
For example, as a layer of large dense particles above a layer of small light particles flows down an inclined
plane, the interface between the layers destabilizes to form ascending plumes of the small light particles and
descending plumes of the large dense particles in the flow (D’Ortona et al., 2020).

We show here that this granular Rayleigh-Taylor instability is the answer to the long-standing question
about the mechanism for the formation of large and small particle axial bands in rotating tumblers. This axial
segregation of different sizes of particles into bands occurs in long horizontal cylindrical rotating tumblers
that are partially filled with a mixture of small and large particles that have the same density. Upon rotation,
particles tumble down the inclined surface in a thin flowing layer, while particles below this flowing layer are in
a static zone that is in solid body rotation with the tumbler. It is well-known that size segregation occurs as
particles flow down the sloped surface in which small particles percolate to the bottom of the surface flowing
layer forcing large particles to rise to the top of the flowing layer. Within a few tumbler rotations, this results
in a segregation pattern in the static zone consisting of a core of small particles with large particles at the
periphery of the tumbler. After hundreds more tumbler rotations following radial segregation, axially spaced
bands rich in small and large particles appear, as shown in Figure 1. Although this phenomenon was first
reported in 1940 (Oyama , 1940), the mechanism for axial segregation was unresolved prior to this work.

Figure 1: DEM simulation showing segregated axial bands after 350 rotations, when the bands are stationary,
in a 100 cm long, 18 cm diameter tumbler rotating at 15 rpm that is half filled with equal volume fractions of
2 mm (blue) and 5 mm (red) spherical particles with periodic boundary conditions.

Using Discrete Element Method (DEM) simulations, we show that this axial segregation is due to the
Rayleigh-Taylor instability. For initially mixed particles having two sizes but the same density, segregation and
collisional diffusion in the flowing layer lead to a three-layer system for the flowing particles at the surface
of the granular bed as the tumbler rotates. To explain, as a mixture of large and small particles flow down
the sloped free surface, the small particles fall through the interstices between the large particles, resulting
in a layer of large particles over a layer of small particles. Due to diffusion at the interface between the
two layers, a layer of mixed particles is interposed between the upper large particle layer and the lower small
particle layer. However, mixed particles pack more densely than particles of the same size, so the middle layer
of mixed particles is more dense than the layer of nearly pure small particles below it, thereby inducing the
Rayleigh-Taylor instability, evident as waviness in the interface between the layers. The waviness destabilizes
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into ascending plumes of small particles and descending plumes of mixed particles with large particles enriched
near the surface of the flow. After many tumbler rotations, this become evident as axially-spaced small and
large particle bands visible at the free surface. Rolls driven by segregation at the tilted interface between
plumes sustain the pattern of upward and downward plumes to reinforce and maintain the bands of small and
large particles.
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Particle tracking and tracer evolution using
Lagrangian means

C. Maitland-Davies∗†, H. Kafiabad†

Lagrangian time averaging, where averages are taken along particle trajectories rather than at fixed spatial
locations (Eulerian averaging), has long been recognised as a useful tool for understanding fluid behaviour with
multiple timescales, especially in oceanic and atmospheric flows. Despite the theory’s advantages, calculating
these Lagrangian means has generally been unattractive due to difficulties associated with tracking particle
trajectories, until recently when an alternative approach was proposed that circumvented this (Kafiabad &
Vanneste, 2023; Baker et al., 2025). Using this approach, one can calculate Lagrangian means online (i.e.
simultaneously with solving the governing equations) and save mean fields of interest with a slow save interval,
lightening the memory footprint that comes with storing model output at high temporal resolution. This
memory-light output can be used to investigate the mean transport of tracers as well as mean particle paths,
which may be useful in analysing the ocean’s large scale circulation, for example. Preliminary results in this
regard are very encouraging, and support the wider use of Lagrangian means in the field. Figure 1 shows an
example using a rotating shallow water system, consisting of a fast wave and a slow balanced flow. Particle
advection is used to reconstruct a tracer field that is materially conserved. The result of advecting particles
with a large timestep using the Lagrangian mean velocity bears much greater resemblance to the ‘truth’ than
advection with the same large timestep but using the instantaneous velocity.

Figure 1: Snapshots of tracer fields that have been advected by a doubly-periodic rotating shallow water flow
with a small timestep (left), and reconstructed from tracked particle trajectories with a large timestep, using
the instantaneous velocity field (centre) and the Lagrangian mean velocity field (right).
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Blind identification of subcritical dynamo equilibria

F. Marcotte∗†, P.Mannix†, Y.Ponty‡, C. Skene§, S.Tobias¶.

In some astrophysical flows known to be linearly stable, finite-amplitude perturbations with a favourable
spatial structure can nonlinearly trigger a transition from a non-magnetic, non-turbulent state to self-sustained
dynamo action and turbulence. However, observations of magnetic fields in astrophysical objects are scarce
and therefore poorly constrain the resulting dynamo field and driving mechanisms. I will show how optimal
control of a finite-amplitude disturbance over a freely evolving flow can successfully identify subcritical dynamo
branches without requiring prior knowledge of the magnetic field amplification process. Following an approach
developed in the context of subcritical transition to turbulence in shear flows, the method also identifies both
the structure and amplitude of critical perturbations. I will discuss some applications to the modeling of
astrophysical dynamos, such as Keplerian discs dynamos and the Geodynamo.
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Optimal body force for heat transfer in turbulent
vertical heated pipe flow

S. Chu∗, E. Marensi†‡, A.P. Willis∗

As buoyancy can help drive a flow, the vertical heated-pipe arrangement is widely used in thermal engi-
neering applications. However, buoyancy suppresses and can even laminarise turbulence in the flow, thereby
seriously damaging the heat transfer, measured by the Nusselt number Nu. As buoyancy, measured by the
parameter C, is increased, three typical flow regimes are possible: shear-driven turbulence, laminarised flow,
and convective turbulence (Parlatan, 1996; Yoo, 2013; Marensi, 2021; Chu, 2024). Here, we develop an op-
timisation method, based on a variational technique, to maximise heat transfer in each of these three flow
regimes by optimising a time-independent body force. Optimisations are performed at Re = 3000.

Beginning with the laminarised state, at C = 3, optimisation improves heat transfer substantially, and when
turbulence is triggered by the force, Nu experiences a strong increase, see figure 1. The optimal force presents
roll structures of different azimuthal wavenumber m (figure 1(a-d)), consistent with previous computations
for steady flow, e.g. Jia (2014); Meng (2005), which are similar to the linear optimal for growth of velocity
perturbations. Computing optimal forces with different rotational symmetries, we found that Nu is maximized
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Figure 1: Top: Time evolution of instantaneous Nusselt number, normalised by the mean for the unforced
flow, for increasing force amplitudes, starting from a laminar initial condition at C = 3, Re = 3000. The
vertical dashed line indicates the optimisation target time T = 600. Bottom: Contours of optimal body force
for corresponding force amplitudes A0: (a) A0 = 10−8, (b) A0 = 10−7, (c) A0 = 5×10−7, (c) A0 = 6×10−7.
The arrows represent the cross-stream components of body force and their magnitude increases with A0. As
the axial component of the body force is at least an order of magnitude smaller, it is not shown.
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for azimuthal wavenumber m = 1 for very small amplitudes of the force A0, and the optimal m increases
as A0 increases. At intermediate A0, a stable nonlinear travelling wave solution is observed. At larger A0,
turbulence is triggered by strong rolls, but whether laminar or turbulent, Nu is found to depend only weakly
on m. Interestingly, at larger A0 turbulence does not necessarily lead to an increase in Nu. Visualisation of
heat flux reveals that the streamwise vortices in forced turbulent states are not as efficient for heat transfer
as those in forced laminar states. At larger force amplitude, unsteadiness of the rolls inhibits heat transfer.

Optimisation in the shear-turbulence regime, at C = 1, is most challenging, as it is highly chaotic,
preventing long target times. However, the method is found to still be effective for much shorter target times,
with T = 50. In this case, despite turbulence being already effective for heat transfer, substantial further
enhancement was still possible. Optimisations with a short target time T but turbulent flow are compared
with optimisations that assume a steady state. Roll structures for the short-T optimisation are found to be
located closer to the wall than those with the steady flow assumption, and the enhancement of Nu is greater.
Like for the laminar state, the enhancement of Nu is found to be robust to the choice of forcing wavenumber
m. In the convective turbulence regime, for C ≈ 4− 6, the force is found to laminarise convective turbulence,
and for C ≈ 7− 8, the flow is only weakly chaotic, so that the results for steady flow are effectively extended
over a larger range. For strong chaotic convective turbulence (C = 16, 32), like for shear turbulence, the short-
T optimisation with large enough A0 leads to greater heat transfer than optimisations with the steady state
assumption and also in this case the roll structures of the force optimised with the short T at all amplitudes
are found to be located closer to the wall than for the corresponding steady calculation, see figure 2.

(a) (b) (c)

Figure 2: (a) Comparison between optimal body forces with different rotational symmetry m optimised in
unsteady convective turbulence (solid line) and a steady two-dimensional laminar state (dashed line) at A0 =
10−5, C = 16, Re = 3000 and target time T = 100. The cross-sections show an example of optimal force
(with m = 5) optimised from: (b) a steady laminar state, and (c) the convective turbulence state. The largest
arrow has magnitude 1.4× 10−3 in (b) and 1.9× 10−3 in (c).
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Flow regimes in turbulent co- and counter-rotating Taylor–Couette
flows of very wide gaps.

S. Merbold∗†, M.H. Hamede ‡C. Egbers ‡

In this study, flow regimes in co- and counter-rotating Taylor-Couette flow (Taylor (1923)) of very wide
radius ratios for various Reynolds numbers up to 1.5× 104 are discussed. The study aims to understand the
effect of curvature on the Taylor-Couette flow, particularly in cases where the circumferential length of the
inner cylinder is smaller than the gap width, which occurs for η < 0.14. In the investigation centrifugally stable
as well as centrifugally unstable flow regimes are realized. The flow is investigated using a visualization method
as well as Particle Image Velocimetry. Here, flow states in the centrifugally-unstable regime are investigated in
the case of counter-rotating cylinders and pure inner cylinder rotation. Beside classical known flow states as
Taylor-Vortex flow and Wavy Vortex flow, a variety of new flow patterns in the cylindrical annulus is observed,
especially for the transition to turbulence (see Merbold et al. (2023)). For strong counter rotation coexisting
turbulent and laminar regions inside the system are observed and investigated in detail. Small turbulent Spots
and bursts of turbulent motion detatching the wall are observed, as well as an irregular Taylor-Vortex flow
and non-stationary turbulent Vortices. Especially, a single Axially-aligned Columnar Vortex between the inner
and outer cylinder is found. The principle regimes observed in flow between independently rotating cylinders
are summarized in a flow-regime diagram. For a more detailed quantitative study, a time-resolved velocity
field measurement has been conducted using a High-speed Particle Image Velocimetry technique through
the TC system end plate, taking into account the curvature of the cylinder wall /Hamede et al. (2023)).
These measurements record the radial and azimuthal velocity components in the 2D horizontal plane, which
is traversed at different axial positions to include known axial wavelengths. The recorded flow field is used to
compute the angular momentum transport in terms of the quasi-Nusselt number. The results show a maximum
in angular momentum transport for low counter-rotating rates of 0.011 < µmax < 0.0077, which is associated
with large-scale structures that span the entire gap. Moreover, the angular momentum transport decreases for
counter-rotation rates higher than µmax until it reaches a minimum value and then tends to increase again
for higher counter-rotation cases,where second maximum of angular momentum transport is expected for
higher speeds. The occurrence of such behaviour was attributed to the presence of novel structures observed
during the investigation of flow configurations. It was determined that these flow structures emerge from
the outer cylinder boundary layer and travel inward, thereby enhancing the momentum transport at such flow
configurations (Hamede et al. (2023)).
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Sensitivity of Bifurcation Scenarios of Time-Periodic
Flows in a cavity

A. Meseguer∗†, A. Alonso†, O. Batiste†, F. Mellibovsky†.

Abstract:

Time-periodic lid-driven flows arising in a four-sided D2-symmetric square cavity are identified. The reported
oscillatory flows result from a rich variety of local and global bifurcations. Local Hopf bifurcations of steady
flows arising in this setting were originally found in Meseguer (2024) using a spectral Chebychev discretization
of the Navier-Stokes equations. Starting near these Hopf bifurcations, stable and unstable orbits are accurately
found and tracked as a function of the Reynolds number using Poincaré-Newton-Krylov methods. Overall,
three families of periodic orbits have been identified. Two of these families are unstable and are destroyed at
global heteroclinic or homoclinic collisions with other steady flows. The only stable orbit found has a long
period and is also born at a global bifurcation.

Preliminary numerical explorations, carried out using a Lattice Boltzmann (lb) method with non-regularized
boundary conditions, identify two of the families of periodic orbits found by the spectral dns method, albeit at
different Reynolds numbers. However, the lb computations reveal a different bifurcation scenario and stability
nature for one particular family of periodic orbits. More specifically, whereas one of the periodic orbits detected
by dns is unstable, being born at a subcritical Hopf bifurcation, the lb method identifies it as stable, in a
supercritical fashion.

We conclude that, overall, regularization of the boundary conditions may affect the structural stability of
the bifurcation diagrams, sometimes leading to higher-codimension (Bautin) scenarios for time-periodic flows.
The discrepancies between the regularized-dns and non-regularized-lb results will be shown, time permitting.
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Experimental investigation of the thermoconvective 
instability in a cylindrical annulus for a high Prandtl 

number fluid. 
A. Meyer1 2, A. Hiremath2, A. Prigent2, I. Mutabazi2

We consider a Newtonian fluid of density 𝜌, kinematic viscosity 𝜈, and thermal diffusivity 𝜅 confined in a vertical 
cylindrical annulus of height 𝐻 with a radial temperature gradient. The inner cylinder of radius 𝑅1 is maintained 
at the temperature 𝑇1 and the outer cylinder of radius 𝑅2 = 𝑅1 + 𝑑 is maintained at the temperature 𝑇2 = 𝑇1 − Δ𝑇, 
where 𝑑 is the gap size and Δ𝑇 is the temperature difference between the two cylinders (Figure 1-a). Under the 
condition of an infinite aspect ratio Γ = 𝐻/𝑑, the base flow consists of a vertical flow ascending near the hot 
cylindrical wall and descending near the cold one. The temperature of the base flow has a logarithmic decreasing 
profile and the velocity has a cubic profile with an inflexion point. The control parameters of the flow are the 
radius ratio 𝜂, the Prandtl number 𝑃𝑟 = 𝜈/𝜅 and the Grashof number 𝐺𝑟 = 𝛼Δ𝑇𝑔𝑑3/𝜈2. 

For a finite length cylindrical annulus, Lopez et al. (2015) have shown that the base flow may be either in a 
conduction regime when the boundary layers at the endplates do not significantly affect the temperature profile 
base flow or in a convective regime in the opposite case. These authors have provided an analytic expression 
𝑅𝑎∗ (𝜂, Γ) = 𝑎(𝜂)Γ which allows to determine the separation between the conduction and convective regimes. For 
a cylindrical annulus with 𝜂 = 0.8 and Γ = 114, Kang et al. (2023) have shown that  𝑅𝑎∗ ≅ 46 446. This suggests that 
for the experiments to be conducted from the base flow with a temperature conduction state, the working fluids 
(i.e. the values of Pr) and the values of Gr should be chosen such that 𝐺𝑟 𝑃𝑟 < 𝑅𝑎∗ . 

Figure 1: Geometry of the studied cylindrical annulus (a), and photography of the experimental apparatus (b). 
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For the base flow with a temperature conduction regime, above a critical value 𝐺𝑟𝑐 of the Grashof number, the 
flow becomes unstable and the nature of instability depends on Pr and of the radius ratio 𝜂 (Bahloul et al., 2000). 
For low values of 𝑃𝑟, the instability is induced according to the Rayleigh-Fjörtfört criterion [Drazin, 2002] by the 
presence of the inflexion point in the velocity profile and leads to hydrodynamic modes. Because of curvature, 
these modes are oscillatory. The threshold 𝐺𝑟𝑐 of these modes is independent of 𝑃𝑟. For large values of 𝑃𝑟, the 
instability is due to the development of temperature perturbations leading to thermal modes which are oscillatory 
and the threshold depends on 𝑃𝑟. For a radius ratio 𝜂 = 0.8, hydrodynamic modes occur for 𝑃𝑟 < 12.5 and thermal 
modes appear for 𝑃𝑟 > 12.5.  

We have performed an experiment with a silicone oil with 𝑃𝑟 = 30 in a cylindrical annulus of gap size 𝑑 = 5mm, 
radius ratio 𝜂 = 0.8 and aspect ratio Γ = 114. With this configuration, it is possible to observe instability in a regime 
close to the conduction one. To observe the instability, Polyamide particles are dispersed in the fluid and we 
measure the velocity using the PIV technique (Figure 1-b). The thermoconvective instability is observed at a critical 
value very close to the predictions of linear stability analysis. The secondary flow consists in the superposition of 
two modes with similar wave numbers, but traveling in opposite directions (Figure 2). We have performed spectral 
analysis and the demodulation of the spacetime diagrams; the results are compared with the results from the 
linear stability analysis. In particular, the Ginzburg-Landau equation is used to characterize the interaction 
between the two instability modes. 

Figure 2: Thermal mode observed with 𝐺𝑟 = 2127. Axial velocity component (left), radial velocity component 
(middle), and spacetime diagram of the radial component of the velocity measured at the mid-gap. 
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On-the-fly Lagrangian averaging

Abhijeet Minz∗†, H. Amini-Kafiabad†, Lois E. Baker‡, Jacques Vanneste‡,§,

Abstract
Many fluid dynamical phenomena involve temporal and spatial scales that cannot be fully resolved by measuring
instruments or numerical simulations. Their modelling requires coarse graining, typically in the form of temporal
or spatial averaging of the equations of motion, and the parameterisation of the impact of the unresolved
scales. Eulerian averaging, in which flow variables are averaged at fixed spatial locations, is widely used. The
alternative of Lagrangian averaging, which involves averaging flow variables along the particle trajectories, has
benefits because it respects the advective structure of the equations modelling fluid motion.

The numerical computation of Lagrangian (time) averages from simulation data is challenging, however. It
can be carried out by tracking a large number of particles or, following a recent approach, by solving a dedicated
set of partial differential equations (PDEs). Both approaches are computationally demanding because they
require an entirely new computation for each time at which the Lagrangian mean fields are desired.

We overcome this drawback by developing a PDE-based method that delivers Lagrangian mean fields for
all times through the single solution of evolutionary PDEs. This allows for an on-the-fly implementation, in
which Lagrangian averages are computed along with the dynamical variables. This is made possible by the
use of a special class of temporal filters whose kernels are sums of exponential functions in Minz (2024).
We implement these in the rotating shallow-water model and demonstrate their effectiveness at filtering out
large-amplitude Poincaré waves.
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Stratified turbulence forced by large scale waves 

N. Mordant1 2, M. Magnier2, T. Valran2, S. Viboud2, P. Augier2, J. Sommeria2

Ocean is stratified in density due to vertical variations of temperature or salt density. This makes its dynamics sensitive 

to gravity. One consequence is the ability of the fluid to sustain internal gravity waves that propagate in its bulk. Another 

consequence is that the motion is anisotropic due to the symmetry breaking by gravity. We investigate experimentally 

turbulence in such a stratified fluid when the horizontal Froude number 𝐹𝑟ℎ is low (∼ 0.01 in our case), the Reynolds 

number 𝑅𝑒 is large (∼ 104 in our case) and the buoyancy Reynolds number 𝑅𝑒𝑏 = 𝐹𝑟ℎ
2𝑅𝑒 is much larger than 1 (∼ 50 in

our case). This range is expected for the submesoscale motions in the bulk of the ocean (although with more extreme 

values of the Reynolds numbers). In these regimes, field data from mid-latitude northern Atlantic show the Garrett & 

Munk spectrum in which the energy spectrum follows power laws as function of frequency or vertical wave numbers 

with exponents -2 (with some observation scatter between -2.5 and -1.5 roughly) that is associated with wave turbulence 

(Polzin & Lvov, 2011, Pollman, 2020). In this range of parameters, scaling analysis predicts the LAST (Layered Anisotropic 

Stratified Turbulence) in which the vertical and horizontal spectrum of horizontal velocity are different due to anisotropy. 

The horizontal spectrum is predicted to scale as 𝑘ℎ
−5/3

 for all scales while the vertical spectrum should have a first range 

with a scaling 𝑘𝑣
−3 followed, at smaller scales, by a scaling 𝑘𝑣

−5/3
 with a return to isotropy (Brethouwer et al. , 2007). 

To investigate experimentally these flow regimes, we use the Coriolis facility in our laboratory that is a large-scale 

turntable, 13m in diameter and 1m deep. We set a linear stratification in water by varying the vertical concentration of 

salt or of a mixture of salt and alcohol (for optical index matching). Rotation can be added as well.  We force the motion 

by generating large scale waves using 4 large oscillating panels (6m long) so that to generate large amplitude, large 

scale internal waves (Savaro et al., 2020, Rodda et al. 2022, 2023). Measurements are: 

- time-resolved Particle Image Velocimetry either in horizontal or vertical cuts of the flow

- Particle Tracking Velocimetry in a volume near the center of the tank to investigate particle dispersion

- Density measurements with conductivity probes either at fixed locations or through vertical profiling.

We use all these measurements to provide a detailed characterization of the statistical properties of turbulence in our

flow.

Figure 1: (left) Vertical and horizontal Fourier spectra of the horizontal velocity for an experiment at strong forcing. 

(right) Frequency spectrum. Dashed lines are power law decays with exponents given in the legend 
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At the highest forcing intensity, we can achieve, the velocity spectrum of the horizontal velocity is shown in figure 1. 

One can see that the vertical spectrum decays following a 𝑘𝑧
−3 and the horizontal spectrum shows a small range of decay

close to 𝑘𝑥
−5/3

. This strongly suggest that our flow is in the LAST regime. The frequency spectrum displays a power law

decay with exponent -2.5 compatible with the Garrett & Munk spectrum. Previous investigation showed that the large-

scale flow is made of internal wave turbulence. 

Figure 2: Left: example of Lagrangian trajectories measured at the strongest forcing. Right: statistics of single particle 

dispersion for the same experiment as a function of time. 

Figure 2 shows some Lagrangian data obtained from the PTV system for a similar experiment as in figure 1. We show 

the dispersion of a single particle from its initial position as a function of time. It can be seen that the vertical dispersion 

saturates much faster than the horizontal one. While the saturation of the horizontal dispersion is a bias of the finite size 

of the measurement, the saturation of the horizontal dispersion is due to the stratification and highlights the impact of 

gravity on the flow and its strong anisotropy.  

We will present further characterization of this flow during the presentation. 
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Instability modes in viscoelastic Taylor-Couette flow with Boger 
fluids : linear stability theory  and experiments 

I. Mutabazi1 2, Y. Bai2, F. Kelai2, O. Crumeyrolle2 and N. Latrache3

We investigate the instabilities modes in viscoelastic Taylor-Couette flow of a Boger fluid using 

linear stability analysis, space-time diagrams of cross-section visualization and particle image 

velocimetry (PIV). The working solution is an aqueous mixture of the polymer solution of 

Polyethylene oxide (PEO) and Polyethylene glycol (PEG). The concentrations of the PEG and the 

POE are chosen in such a way to obtain solutions with constant shear viscosity  i.e. solutions 

without shear-thinning because of the presence of PEG.  Viscoelastic solutions are characterized by 

the viscosity ratio 𝑆 = 𝜂𝑝 𝜂⁄  with p  the polymer contribution to the viscosity and the elasticity 

number 𝐸 = 𝜆 𝜏𝜐⁄ where   is the polymer relaxation time and  𝜏𝜐 = 𝜌𝑑2 𝜂⁄ is viscous diffusion time

in the gap annulus [1]. The shear of the viscoelastic fluid is characterized by the Weissenberg 

𝑊𝑖 = 𝜆𝛾̇ which is the analog of the Reynolds 𝑅𝑒 = 𝜏𝜈𝛾̇  where 𝛾̇ is the shear rate.  The ratio 

𝐸 =
𝑊𝑖

𝑅𝑒
=

𝜆

𝜏𝜈
 defines the elasticity of the polymer solution and it is an intrinsic property of the 

polymer solution in a given flow configuration. The cylinders are rotated independently with 

angular velocities i and o=I so that we define associated Reynolds numbers as follows: 

𝑅𝑒𝑖 = Ω𝑖𝑎𝑑/𝜈 and 𝑅𝑒𝑜 = Ω𝑜𝑏𝑑/𝜈 where 𝑑 = 𝑏 − 𝑎 with a and b being the radii of the inner and 

outer cylinder respectively.  Another set of control parameters consists of the rotation ratio 

𝜇 = Ω𝑜 Ω𝑖⁄  and the Taylor number  𝑇𝑎 = 𝑅𝑒𝑖 (
𝑑

𝑎
)
1/2

. So a viscoelastic flow in the Taylor-Couette 

with given radius a/b ratio is determined by 4 control parameters: (𝑆, 𝐸, 𝑅𝑒𝑖, 𝑅𝑒𝑜) or (𝑆, 𝐸, 𝜇, 𝑇𝑎). 

We will present results from viscoelastic flow instabilities in three different cases: rotating 

inner cylinder with fixed outer cylinder, rotating outer cylinder and fixed inner one, and both 

rotating cylinders in quasi-Keplerian regimes. The flow patterns have been investigated using flow 

visualization by seeded anisotropic particles and by particle image velocimetry (PIV). Linear 

stability analysis has been performed to determine the critical parameters for different solutions. In 

the  viscoelastic Taylor-Couette flow, there are two destabilizing mechanisms : the centrifugal force 

(the inertia force) and the elasticity [2]. The interplay between the elasticity of the polymer solution 

1 Corresponding author: innocent.mutabazi@univ-lehavre.fr 
2 Université Le Havre Normandie, LOMC, UMR 6294 CNRS/ULHN, Le Havre, France 
3 Université de Bretagne Occidentale, IRDL, UMR 6027 CNRS/UBO, Brest, France. 
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and the inertia forces leads to different critical modes : stationary Taylor vortices for very small 

values of the elasticity, ribbons i.e. superposition of spirals of opposite helicity for intermediate 

values of the elasticity and disordered elastic vortices for large values of the elasticity and weak 

inertia forces. The effect of the inertia force can be suppressed by choosing the Rayleigh-stable flows 

in which the centrifugal force does not destabilize the flow (Keplerian regime or fixed inner cylinder 

and rotating outer cylinder). A generalized Rayleigh criterion for viscoelastic curved flows shows 

that the elasticity is always destabilizing.  We will present the critical states from both experiments 

and linear stability theory for different flow situations. The centrifugal force  induces Taylor vortices 

while the elasticity induces oscillating vortices which superimpose to generate ribbons for 

intermediate values of elasticity and disordered elastic vortices for large values of elasticity.  

Figure 1: Instantaneous radial velocity (𝑉𝑟 𝑉𝑟,𝑚𝑎𝑥⁄ ) in the (r, z) plane (IC : inner cylinder, OC :

outer cylinder); b) Axial profile of the radial velocity in the middle of the gap ; c) Radial profile of 

the radial velocity profile in the inflow position of the elastic vortices.  
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Spiral vortex flows of the Taylor-Couette system
in the narrow-gap limit

M. Nagata∗†

Taylor-Couette flow describes the closed fluid motion between two concentric cylinders rotating about their
common axis. Considering a vast number of experiments that have been explored, one interesting question
arises regarding how the experimental observations change when the gap is reduced to zero, that is, when
the radius ratio, η ≡ ri/ro, approaches 1, where ri and ro are the radii of the inner and the outer cylinders,
respectively. In this so-called narrow-gap limit, the circular geometry of the cylinder walls approaches a plane
geometry. In the present work, we extend the recent linear and nonlinear analyses for axisymmetric cases in
the narrow-gap limit by (Nagata, 2023 and 2024), to non-axisymmetric cases, and obtain finite-amplitude
solutions in the form of spiral vortex flows numerically.

Formulation:

We consider incompressible motion of a fluid with density ρ and kinematic viscosity ν, which is confined
between two coaxial cylinders of infinite extent in the axial direction, where the inner and outer cylinders at
radii ri and ro, rotate with angular velocities, ωi and ωo, respectively. We assume that ωi 6= 0.

After appropriately scaled by
√

1− η or 1/
√

1− η, depending on the variables and the coordinates, the
disturbance velocity and pressure [û∗; p̂∗] which are superimposed on the basic state, i.e. on circular Couette
flow (CCF), [U∗

B ;P ∗
B], are governed by

∇∗ · û∗ = 0, (1)

(∂t −∇∗2)û∗ = −∇∗p̂∗ −U∗
B∂x∗û∗ +Re∗ û∗z∗ î−

1

2
Q∗z∗û∗x∗ k̂−

1

2
(û∗x∗)2k−Ω∗ĵ × û∗ − (û∗ · ∇∗)û∗, (2)

where î, ĵ and k̂ are the unit vectors in the azimuthal (x∗), axial (y∗) and wall-normal (z∗) directions, and Re∗

is the Reynolds number, Ω∗ is the rotation number and Q∗ represents the effect of inertia with the following
constraints: Ω∗ = 1+µ

1−µRe
∗ and Q∗ = 2Re∗. In the present analysis, we choose τ = Q∗Re∗ = 2(Re∗)2

and the angular velocity ratio, µ ≡ ωo/ωi, as the two controlling parameters. We call τ the modified Taylor
number. See (Nagata, 2023 and 2024) for the derivation of (1) and (2).

Results and Discussion:

We anticipate that nonlinear flows possess a spiral vortex flow (SVF) structure, ∝ exp[im{α(x∗− ct) +βy∗}]
with m ∈ Z, travelling in the x∗-direction with the phase speed c, where α and β are the wavenumbers in the
x∗- and the y∗-directions. It is found that, consistent with the results of linear stability analysis by (Krueger et
al., 1966), SVFs bifurcate directly from CCF before axisymmetric Taylor vortex flows (TVF) set in, as shown
in Figure 1(a) for µ = −1. The figure shows the bifurcation branches of SVFs with various values of α for
β = 2.0 and α =0.44721 for β=1.821. It is seen that the bifurcation of TVF (α = 0) is subcritical. As α
is increased from zero, the bifurcation remains subcritical with the bifurcation point below the critical τc for
TVF. As α is further increased, the bifurcation nature changes gradually from subcritical to supercritical.

At the point of bifurcation from CCF, the phase speed, c, of SVF satisfies

c = −σI/α, (3)

where σI is the imaginary part of the eigenvalue σ of the perturbation at the criticality τ = τc, which
is determined by the linear stability analysis. (The real part of σ corresponds to the growth rate of the
perturbation.) This is checked in Figure 1(b), where c of SVF and −σI/α of infinitesimal perturbations near
the critical point are plotted. It is seen that c is less than −σI/α for all α.
∗Corresponding author: nagata.masato.45x@st.kyoto-u.ac.jp
†Kyoto University, Kyoto, JAPAN
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To see the flow pattern, we plot the stream function Ψ on the (z∗, y∗) cross-section along one wavelength
in the x∗-direction in Figure 2. It is seen that the vortex centre moves along a direction inclined from the
x∗-axis. The spiral flow pattern propagates in the azimuthal (x∗) direction with the phase velocity c like the
barber’s pole.
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Figure 1: (a): The momentum transport M∗
T normalised by Re∗ as a function of the modified Taylor number

τ for SVF with various values of the azimuthal wavenumber α for µ = −1. The axial wavenumber is β = 2.0
for all α, except for the branch of α = 0.44721 where β = 1.821. It is known that the minimum τc among all
combinations of α and β takes place for α = 0.44721 and β = 1.821 when µ = −1 (Krueger et al., 1966).
(b): The phase velocity, c, of SVF for µ = −1. The branches of SVF correspond to those in Figure 1 (a). The
line segments near the bifurcation point indicate −σI/α of infinitesimal perturbations determined by linear
analysis.
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Figure 2: The stream function, Ψ, on the (z∗, y∗)-plane at x∗ = 0, 0.5π/α, π/α, 1.5π/α and 2π/α from
left to right, at τ = 3000 for µ = −1. α = 0.44721 and β = 1.821.

We shall discuss other nonlinear characteristics of SVF, such as the mean flow in the azimuthal direction as
well as in the axial direction. Also, comparisons with available experimental observations shall be attempted.
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Rapidly Rotating Wall-Mode Convection

J. S. Oishi∗†, G. M. Vasil‡, K. J. Burns§, D. Leconaet¶, B. P. Brown‖

K. Julien∗∗,

In the rapidly rotating limit, we derive a balanced set of reduced equations governing the strongly nonlinear
development of the convective wall-mode instability in the interior of a general container. The model illustrates
that wall-mode convection is a multiscale phenomenon where the dynamics of the bulk interior diagnostically
determine the small-scale dynamics within Stewartson boundary layers at the sidewalls. The sidewall boundary
layers feedback on the interior via a nonlinear lateral heat-flux boundary condition, providing a closed system.
Outside the asymptotically thin boundary layer, the convective modes connect to a dynamical interior that
maintains scales set by the domain geometry. The final system of equations resembles boundary-forced
planetary geostrophic baroclinic dynamics coupled with barotropic quasi-geostrophic vorticity. The reduced
system provides a new avenue for investigating wall-mode convection in the strongly nonlinear regime. We
also derive the dominant Ekman-flux correction to the onset Rayleigh number for large Taylor number, Ra ≈
31.8Ta1/2 − 4.43Ta5/12 +O(Ta2/3) for no-slip boundaries. However, we find that the linear onset in a finite
cylinder differs noticeably compared to a Cartesian channel. We demonstrate some of the reduced model’s
nonlinear dynamics with numerical simulations in a cylindrical container.
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Figure 1: Midplane linear temperature perturbations at aspect ratio Γ = 1 (left) and Γ = 5 (right).

Figure 2: Temperature space-time propagation diagram at R/Rc = 2 with no-slip boundaries.
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Non-linear instabilities in stratified Taylor-Couette flow

Junho Park∗†, Abhishek Kumar†, Jacopo Gianfrani†

It is not uncommon for various naturally-occurring and engineering flow systems to have stratification of
density or temperature along the vertical direction of gravity. Taylor-Couette flow with stable stratification
along the vertical/axial direction has served as a laboratory model for complex flow systems as the flow allows
us to investigate effectively how a complex interplay between stratification and rotation in shear flow leads to
instability and turbulence. The stratification plays a dual role in Taylor-Couette flow. On the one hand, it
delays the onset of centrifugal instability (CI) and its transition to turbulence by suppressing the vertical motion
of fluid (see e.g. Withjack and Chen , 1974; Boubnov et al., 1995; Caton et al., 2000). On the other hand,
stratification can promote another type of instability called strato-rotational instability (SRI) as its restoring
force can generate an inertia-gravity wave and the SRI can be triggered by a resonant interaction between
the waves trapped near the two cylinders (see e.g. Yavneh et al., 2001; Shalybkov and Rüdiger , 2005). It is
noteworthy that while the CI is characterised by a profile of rotation (i.e. a necessary condition for centrifugal
instability is µ < η2 where µ = Ωo/Ωi and η = Ri/Ro are the angular velocity and radius ratios, respectively)
as it originates from the centrifugal imbalance, the SRI depends not on a rotation profile but on stratification
as it originates from the resonance of inertia-gravity waves, which can be triggered when the stratification is
sufficiently strong. This leads to our finding of SRI in centrifugally-stable regimes such as the Keplerian regime
(µ ∼ η3/2) or super-rotation regime (Ωo > Ωi) (Le Bars and Le Gal , 2007; Park and Billant , 2013; Ibanez
et al., 2016). There have been recent advances on further understanding on the dynamics of SRI such as a
variant SRI due to a coupling with critical layers (Wang and Balmforth , 2018) or the SRI driven by centrifugal
buoyancy (Lopez and Marques , 2020, 2022).

Figure 1: (Left) Neutral stability curves for centrifugal instability at η = 0.9 and µ = 0. (Middle) Neutral
stability curves for strato-rotational instability at η = 0.9 and µ = η2. (Right) Transition from axisymmtric
Taylor vortices to wavy vortices via secondary instability at N = 1, Rei = 200, Pr = 0.01.

Our work aims to address how the centrifugal and strato-rotational instabilities develop nonlinearly in
Taylor-Couette flow when a fluid is stratified and thermally diffusive. We focus on the regime where the
Prandtl number Pr = ν/κ, which denotes a ratio between kinematic viscosity ν and thermal diffusivity κ, is
low as Pr < 1. The low-Pr regime is of particular interest to astrophysicists due to its relevance to various
astrophysical flows (see e.g. Garaud , 2021) From linear stability analysis, it is found that strong thermal
diffusion with low Pr promotes centrifugal instability (Figure 1 left) while it delays strato-rotational instability
(Figure 1 middle). Such a contrary role of thermal diffusion on these two instabilities is based on the dynamics
in which stratification is favoured and disfavoured by SRI and CI, respectively, while the effect of stratification
is suppressed by strong thermal diffusion.
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At the 23rd ICTW in 2025, we will present details of how these instabilities change with thermal diffusion
in both linear and non-linear regimes. Our recent work (Park , 2024) revealed how CI develops nonlinearly
and leads to different stages: saturation, secondary instability or chaotic states, depending on the Prandtl
number Pr, non-dimensional Brunt-Väisälä frequency N and Reynolds number Rei. At a relatively low Pr
in the range 10−3 < Pr < 1 at N = 1, it is found that thermal diffusion delays the onset of secondary
instability, which appears as non-axisymmetric wavy vortices (Figure 1 right). For lower Pr < 10−3, the
flow behaves as an unstratified Taylor-Couette flow due to the suppression of stratification effect by strong
thermal diffusion. Chaotic flow states, a precursor to turblence, have also been examined in this work to
unveil the non-linear dynamics of stratified Taylor-Couette flow. In the presentation, we will also present how
SRI develops nonlinearly to secondary states (see also, Leclercq et al., 2016; Lopez and Marques , 2022) and
transitions to turbulent states when the Prandtl number Pr is low. Results from parametric investigations on
SRI and subsequent flow patterns with varying Pr, N and Re and other parameters will also be presented.
Furthermore, the Nusselt number Nu as a measure of the torque at the inner cylinder will be explored in wide
parameter space for both CI and SRI to address how the angular momentum transport varies with instabilities
and parameters.
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Experimental and numerical investigation of
multi-humped mode-2 internal solitary waves

Niraj Kr Prasad∗†, Alex Doak‡, Ricardo Barros§, Paul A Milewski¶, Magda Carr‖

Internal solitary waves (ISWs) are solitary waves that occur within stably stratified water columns where
density changes are due to changes in temperature or salinity or both. The pycnocline, where density changes
relatively quickly with depth, acts as a wave guide for such internal wave motion. ISWs are characterized
by different modes. Mode-1 ISWs are the most frequently observed mode, and they displace isopycnals
in one direction only (depression or elevation). Mode-2 ISWs displace isopycnals in two directions and are
characterized by concurrent elevation and depression of isopycnals into the upper and bottom layers respectively.
Mode-2 ISWs are commonly observed as convex bulges propagating along the pycnocline, but recent studies
have suggested the presence of other types of profiles.

Strongly nonlinear theory of large amplitude ISWs has reported a unique class of mode-2 ISWs characterized
by multi-humped profiles (Doak,2022). So far, limited investigations have been made of these unique mode-2
waves. Thus, experimental and numerical studies were performed to investigate the physical generation of such
waves. Simulations were performed on an open-source solver, Spectral Parallel Incompressible Navier-Stokes
solver (SPINS) (Subich,2013) to observe the formation of mode-2 waves with double, triple, and quadruple
humped profiles. A numerical domain mimicking the laboratory wave flume was used. The computational
domain represents a rectangular flume filled with fluids of three different densities (ρ1, ρ2, ρ∗). The domain
was divided into two parts of length lg (Domain 1) and lm (Domain 2) by a partition (gate). The two
portions of the computational domain were filled with different thicknesses of the fluid layer of density of ρ∗.
The difference in the thickness of the said layer generates the mode-2 waves. Free-slip boundary conditions
were applied at the top and bottom boundary. The thickness of each fluid layer for the present numerical
investigation is shown in Fig. 1. The domain was discretized into 1024 × 256 grid elements. The values of
the parameters taken for the study are ρ1 = =1025 kg/m3, ∇ρ = 0.024, lg = 30 cm and h = 40 cm.

.
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Figure 1: Computational domain mimicking the laboratory wave flume
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Figure 2: Map showing the effect of generating volume thickness (h2g) on morphology of mode-2 waves

The water column was stably stratified, and a lock release method used to generate the ISWs due to
buoyancy adjustment. Simulation results revealed that the mode-2 wave profile changes from double to triple
hump when the wave generating volume behind the lock increases (Fig. 2). Furthermore, the waves generated
were more stable when the pycnocline in the main part of the domain was at a higher distance from the bottom
of the domain. The effect of offsetting the generating volume from alignment with the pycnocline in the main
section of the flume was investigated and shown to be crucial in generating multi-humped waves. Preliminary
experimental investigation in a 7m long wave flume has taken place and results will be presented to illustrate
the physical flow.
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From internal waves to turbulence in a stably
stratified fluid

C. Rodda∗†, C. Savaro‡, V. Bouillaut†, P. Augier†, J. Sommeria†,
T. Valran†, S. Viboud†, N. Mordant†

We report on the statistical analysis of stratified turbulence forced by large-scale waves. The setup mimics
some features of the tidal forcing of turbulence in the ocean interior at submesoscales. Our experiments are
performed in the large-scale Coriolis facility in Grenoble, which is 13 m in diameter and 1 m deep. Four wave
makers excite large-scale waves of moderate amplitude. In addition to weak internal wave turbulence at large
scales, we observe strongly nonlinear waves, the breaking of which triggers intermittently strong turbulence at
small scales. A transition to strongly nonlinear turbulence is observed at smaller scales. Our measurements are
reminiscent of oceanic observations. Despite similarities with the empirical Garrett and Munk spectrum that
assumes weak wave turbulence, our observed energy spectra are rather to be attributed to strongly nonlinear
internal waves.

Figure 1: Snapshots in a vertical plane of a volumetric laser scan of a fluorescent dye layer showing a
overturning internal wave.
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Data-Driven Numerical Investigation of
Dielectrophoretic Force-Enhanced Annular Flows

J. Roller∗†, M.H. Hamede‡, A. Meyer§, Ch. Egbers‡, V. Heuveline†

The enhancement of heat transfer in dielectric fluids by electric fields has raised the interest of researchers
in both fundamental and applied fields over the past decades. In this study, we investigate the comparison
between experimental and numerical dynamics of a fluid between two concentric, differentially heated cylinders
where a high-frequency electric voltage is applied to the inner cylinder, while the outer cylinder is grounded.
This setup induces the dielectrophoretic (DEP) force, creating an additional source of buoyancy along with
Earth’s gravity. We refer to the corresponding partial differential equation (PDE) model as the thermal
electrohydrodynamical (TEHD) Boussinesq equations. The complex PDE model – usually three-dimensional
and instationary – leads to challenging and CPU-intensive computations, which we address with tailored finite
element method (FEM) discretizations and solvers.
Our contribution is focused on two particular sets of experiments. In the first set, the horizontally aligned
cylinders remain at rest. We could demonstrate numerically that the heat transfer is enhanced by the DEP
force. Upon a sufficient voltage increase, the two-dimensional base flow destabilizes and becomes fully three-
dimensional. The destabilization of the base flow is beneficial as it is closely related to a further jump in the
heat transfer. As seen in figure 1, we could verify a close match between numerical and experimental data
(Hamede et al. , 2024). We achieved this level of agreement in part by calibration of the computational model
using experimental results. The experimental-numerical match gives credence to our above statements about
the heat transfer, as it is a quantity that could only be evaluated numerically. The second set of experiments
concerns vertically aligned cylinders. Here, the unicellular base flow can also be destabilized by a sufficient
voltage, producing columnar vortices with a corresponding increase in heat transfer (Seelig et al. , 2019).
When the inner cylinder is set to rotate, the voltage threshold required for destabilization changes. We intend
to compute such threshold numerically and compare with the values obtained from the associated physical
experiment. Based on an adequate calibration, we aim to provide reliable numerical methods in the context
of the highly challenging problems in TEHD flows.
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Figure 1: Space-time plots (Hovmøller diagrams) of the radial fluid velocity Ur at the mid-gap position
between horizontally aligned cylinders. The velocities have been axially averaged and are presented here for
different azimuthal positions. The lowest positional value −π/2 denotes the bottom of the annulus, while
π/2 represents the top. Both plots correspond to a flow with temperature differential ∆T = 9K between
the inner and outer cylinders and imposed peak voltage Vp = 17 kV . The respective Rayleigh number is
Ra = αg∆Td3

νκ = 2.78 × 104, where d denotes the gap size. In plot (a) the velocities are calculated from
numerical simulations, for (b) the velocities are obtained from experiments. A substantial qualitative and
quantitative fit can be observed. This figure was originally published in (Hamede et al. , 2024).
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Simultaneous Generation and Scattering of Internal
Waves by Bottom Topography

Sai Saandeep Sampatirao∗, Michael Allshouse†, Hanut Vemulapalli‡, Manikandan Mathur*∗§

The dissipation mechanisms of low-mode internal tides, which propagate far from their topographic gener-
ation sites, are crucial for understanding large-scale circulation and the energy budget in the ocean. Scattering
by bottom topography is one of the identified pathways to dissipation [Johnston and Merrifield, 2003]. Mod-
elling studies so far, have treated internal wave generation and scattering as independent problems, but in
reality, they occur together. In this study, we model the combined effects of internal wave generation by a
barotropic forcing and scattering of an incident mode-1 internal wave, at an isolated bottom topography in
uniform stratification using a semi-analytical Green function approach. This approach was previously used to
model topographic generation [Pétrélis et al., 2006] and scattering [Mathur et al., 2014] of internal waves.
Four different parameters govern the problem - the non-dimensional topographic height (height ratio h∗) and
slope (criticality ϵ), and the amplitude ratio of barotropic forging-to-incident mode-1 internal wave (U0) and
phase (Θ) of the barotropic forcing with respect to the incident mode-1 internal wave.

Figure 1 shows a schematic of the problem studied. A bottom topography of maximum height h0 and
criticality ϵ is present in an inviscid ocean of depth H = h0/h

∗. The topography experiences forcings
from two sources: (i) a barotropic forcing modelled as a uniform oscillatory flow throughout the depth, and
(ii) a baroclinic left-to-right mode-1 internal wave which is generated far away from the topography under
consideration. The simultaneous presence of barotropic and baroclinic forcings results in a combined occurrence
of internal wave generation and scattering. The boundary conditions are no normal flow on the rigid lid and
no normal flow on the bottom topography and ocean floor.

Figure 1: A schematic showing a bottom topography of height h0 in an ocean of depth H, with a rigid lid
representing the ocean surface. The forcing includes a barotropic oscillation and an incident baroclinic mode-1
internal wave, with a phase difference between the two.

The theory is first validated using numerical simulations. Figure 2 shows a snapshot of the horizontal
velocity field (excluding the barotropic component) for topographic parameter values of (h∗, ϵ) = (0.3, 0.3).
Figures 2(a) and (b) correspond to the individual generation only and scattering only problems. Figures 2(c)
and (d) correspond to the combined forcing problems with phase differences Θ = 0, π respectively. The
flow field in combined forcing problems has significant differences from the individual problems. We can also
observe a noticiable difference in wavefields between Θ = 0 and π. The snapshots from simulations (figures 2e

∗Geophysical Flows Lab and Department of Aerospace Engineering, Indian Institute of Technology Madras, India
†Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
‡Institute for Power Systems and High Voltage Technology, ETH Zürich, Switzerland
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and f) agree qualitatively and quantitaively with theory. We then proceed to do a detailed parameter sweep
after validation with simulations.

Figure 2: Snapshots of horizontal velocity (without the barotropic component) for (a) scattering only, (b)
generation only, and combined scattering and generation with U0 = 2.79 and (c) Θ = 0, (d) Θ = π. Figures
(a) - (d) are based on Green function theory. (e)-(f) are same as (c)-(d), but based on numerical simulations.
All the figures correspond to (h∗, ϵ) = (0.3, 0.3).

For a given topography and U0, as Θ is varied, the energy flux of the combined forcing deviates significantly
from mean value, which is the sum of the energy fluxes associated with generation in the presence of the
barotropic forcing alone and the incident mode-1. This occurs for a wide range of topographies and forcing
amplitudes. These deviations, which occur due to construction/destruction of individual modes, can lead to
two scenarios: (i) additional or lower or no new internal wave generation, which can be interpreted as the
influence of the incident internal wave on the internal wave generation, (ii) “loss” of incident internal wave
energy to other forms, which can be interpreted as the influence of barotropic tide on the scattering. These
energy flux gain or loss effects are typically predominant for short subcritical (h∗ ≲ 0.4, ϵ < 1) and sufficiently
steep, tall (h∗ ≳ 0.4) topographies.
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Transition to Turbulence in the Stokes Boundary
Layer: Edge States and the Periodic Self-Sustaining

Process

Jorge Sandoval∗†, Tom Eaves†

The Stokes boundary layer is an oscillatory flow above an infinite plate, with oscillations driven either by
(1) a transverse sinusoidal motion of the plate or (2) a sinusoidal applied pressure gradient. Beyond a critical
Reynolds number of 2511, the laminar solution of the Stokes boundary layer is susceptible to linear instability.
However, this instability is subcritical given that turbulence is observed for Reynolds numbers above approxi-
mately 700, despite the flow being linearly stable in this range.

The state space of a subcritical flow consists of two basins of attraction: that of the laminar flow and
that of turbulence. A saddle point separates these basins, termed the ‘edge state’, and its codimension-one
stable manifold termed the ‘edge manifold’, or simply ‘edge’. The edge states may be found by ‘edge tracking’,
an iterative procedure in which the trajectories of initial conditions on either side of the edge are computed
and bisected.

Edge states in the Stokes boundary layer are composed of vortical structures of the same nature as canonical
shear flows, namely streaks, rolls and waves (see Figure 1). For non-oscillating shear flows, these structures are
known to coexist and mutually balance through a mechanism known as the Self-Sustained Process. However,
in the Stokes boundary layer, these structures are inherently periodic and utilise the oscillating base flow in a
novel way. Structures migrate upwards to align with the location of the maximum shear of the laminar velocity
profile, and large-scale rolls form to periodically create new streaks near the wall. This talk will present these
edge states in the Stokes boundary layer, compare them to their known non-oscillatory counterparts, and
provide insights about their effects on momentum and energy transport among structures near the wall.

Figure 1: Schematic representation of the structures involved in the PSSP.
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Role of interfacial surfactant and wall deformability on 

linear stability of film flows 

G. Sharma1 2, N. Jain2*, M. Baingne3, D. S. Tomar4

Abstract 
Liquid film flows find widespread applications in numerous technologies as well as in physiological flows such as 

in lung airways. A planar Newtonian liquid film falling down a rigid inclined plane becomes unstable above a 

critical Reynolds number (Re) for long-wave disturbances, and this long-wave instability is referred as gas-liquid 

(GL) free-surface mode (Yih, 1963). In contrast to the planar liquid films, a cylindrical Newtonian liquid film lining 

inside of a tube exhibits Rayleigh-Plateau (RP) capillary instability in creeping flow limit for long-wave disturbances. 

The effect of presence of interfacial surfactant is known to be stabilizing for both planar and cylindrical films on 

GL mode and RP mode, respectively (Craster & Matar, 2009). Further, an additional mode, known as surfactant 

mode, appears in presence of interfacial surfactant. This surfactant mode is known to remain stable for both 

planar and cylindrical films. For planar film, the stability of surfactant mode is established in presence/absence of 

basic flow. However, for cylindrical film, the surfactant mode stability is explored only for the case of a stationary 

film (i.e. zero basic flow). Here, we 

report the results for the linear 

stability of surfactant-laden 

Newtonian cylindrical film lining 

inside of a tube in presence of the 

basic flow (Figure-1). We 

demonstrate the differences that 

arise in the stability behavior of RP 

mode due to surfactant for a flowing 

film in comparison to a stationary 

film. More importantly, we show 

that the surfactant mode becomes 

unstable in presence of basic flow and can be the most unstable mode depending on process parameters. For 

surfactant-laden planar film falling down an inclined plane (Figure-1), we show that the stability behavior is 

dramatically affected when the inclined plane is coated with a soft solid layer. 

We first present the results of surfactant-laden liquid film flowing inside of a tube. We have considered creeping 

flow limit and the relevant non-dimensional parameters are: (i) the mean gas-liquid interface location (R1), (ii) 

Bond number (𝐵𝑜 = 𝜌𝑔ℎ0
2/𝛾0

2, where 𝜌 is the density, ℎ0 is the film thickness, and 𝛾0 is the surface tension with

constant mean surfactant concentration Γ0) characterizing the strength of flow (𝐵𝑜 = 0 implies absence of basic 

flow), and (iii) Marangoni number (𝑀𝑎 = 𝐸Γ0/𝛾0) denoting the presence (𝑀𝑎 ≠ 0) or absence of surfactant (𝑀𝑎 =

0). The early work on stationary film have shown that the surfactant reduces the growth rate of RP instability but 

is unable to completely eliminate it, and the surfactant mode always remain stable. In contrast, the present work 

demonstrated that the RP instability is completely suppressed and the surfactant mode becomes unstable when 

basic flow is incorporated in stability analysis (Jain, Sharma & Das, 2022). Figure-2 shows the growth rate vs. 
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Figure-1: Schematic of cylindrical and planar film flow configurations.  
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wavenumber data for both RP and surfactant modes. This clearly demonstrates that the RP instability is 

completely suppressed when 𝑀𝑎 increases above a threshold value for non-zero Bond number. In contrast, the 

surfactant mode exhibits significant positive growth 

rates (i.e. unstable) for any non-zero 𝑀𝑎. Further, this 

surfactant-mode instability starts from low-

wavenumber and extends to sufficiently high 

wavenumbers. In fact, the highest growth rates are 

observed for wavenumbers greater than unity, and 

thus, there is a shift in nature of instability from long-

wave to finite-wave dominated instability in 

presence of flow (due to excitation of surfactant 

mode instability). We have also carried out a long-

wave asymptotic analysis which helps us to elucidate 

the mechanism behind the surfactant mode 

instability in presence of basic flow. 

We now discuss the effect of presence of soft solid 

coating on the stability of surfactant-laden planar 

film flowing down an inclined plane (Tomar, Baingne & Sharma, 2017). In absence of soft solid coating, the GL 

interface remains stable for 𝑅𝑒 = 0, and the surfactant mode has been shown to remain stable for zero/non-zero 

Reynolds number. We have shown that the presence of soft solid layer triggers the surfactant mode instability 

even for 𝑅𝑒 = 0 when the wall deformability parameter (𝐺 = 𝜇𝑉/𝐸𝑅) increases above a critical value (refer Figure-

3). It is important to note that the GL interface allows two modes: GL mode and surfactant mode, and one 

additional mode called as liquid-solid (LS) mode also appears because of the presence of a deformable LS 

interface. Figure-3 shows that the LS mode becomes unstable at higher values of 𝐺 than required for triggering 

surfactant mode instability. Thus, in creeping flow limit, the wall-deformability induced surfactant mode remains 

the most dominant mode for the system. For 𝑅𝑒 ≠ 0, the GL mode instability becomes operational, and it has 

been shown that the presence of soft solid coating can suppress this GL mode instability without exciting 

surfactant or LS modes. For example, Figure-4 shows that the region between upper and lower neutral curves, 

the GL interface is stabilized by soft solid coating while all other modes remaining stable. Thus, this work shows 

the dual role of soft solid coating for surfactant-laden planar films.  
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Figure-2: Growth rate vs. wavenumber data for RP 

(continuous line) and surfactant mode (dashed line) for 

𝑅1 = 0.7, 𝐵𝑜 = 1 at different values of 𝑀𝑎. 

Figure-3: Neutral curves showing destabilization of 

surfactant mode for 𝐻 = 5, 𝑅𝑒 = 0, 𝜃 = 45𝑜 

Figure-4: Neutral curves showing stabilization of 

film flow for 𝐻 = 2, 𝑅𝑒 = 1.5,𝑀𝑎 = 025, 𝜃 = 45𝑜 
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Hagen-Poiseuille Flow in the pipe layered by porous
medium is linearly unstable

Ajay Sharma ∗, P. Bera∗† and Gaurav Sharma∗

Figure 1: Physical sketch of the dimensional flow domain

The long-standing linearly stable Hagen-Poiseuille flow is shown to become unstable when a low-permeable
porous medium layers the inner surface of the pipe (Reynolds , 1883). The configurational layout for the current
problem as shown in Figure 1, comprises of a long pipe of radius r1 with the inner surface layered by the fluid-
saturated porous medium. The interface is located at r = ri. The flow is driven by an external pressure
gradient in the axial direction. An unsteady Darcy’s law is used to model the Newtonian fluid flow inside the
porous domain (Nield & Bejan , 2017). The instability of the system is governed by five key dimensionless
parameters: the thickness ratio (t̂), Darcy number (Da), Reynolds number (Re), porosity (ϵ), and the Beaver-
Joseph interfacial slip-constant (α

BJ
). The D2-Chebyshev-spectral-collocation method is utilized to determine

the instability boundary numerically, in terms of Rec as a function of Da, t̂ and α
BJ

, while fixing the porosity
at 0.3 (Chen & Chen , 1989).

The analysis indicates that depending upon the media permeability, a threshold value of the fluid layer
thickness exists below which the onset of instability occurs under axisymmetric disturbances, whereas above
the threshold value, the same occurs under non-axisymmetric disturbance. In the former case, the instability
is induced due to the interaction of the dynamics of base flow with the porous layer and leads to the porous
mode of instability. The latter case is due to the combined effect of Reynolds stress in the fluid regime and
slip porous boundary at the interface, and gives rise to the fluid mode of instability. For instance, when
the Darcy number and Beavers-Joseph slip coefficient are fixed at Da = 10−6 and α

BJ
= 0.1, respectively,

the threshold value of t̂, at which the instability mode changes is around 0.0336. Our results show that the
threshold value of t̂ increases monotonically with an increase in Da. In the fluid mode, energy production due
to Reynolds stress is balanced by energy loss via viscous dissipation, whereas in the porous mode, the same
is balanced mainly by combined energy loss via surface drag and work done at the interface (Boomkamp &
Miesen , 1996). In addition, keeping the thickness of porous region fixed, the fluid layer thickness for which
almost similar instability characteristics are found varies directly as the square root of media permeability.
Our rigorous analysis also shows that α

BJ
destabilizes the flow, and the onset of instability takes place at a

Reynolds number as small as 695, when Da = 10−6, α
BJ

= 0.3 and t̂ = 0.016. Furthermore, an increase in
α

BJ
invites the fluid mode of instability for a relatively low values of fluid layer thickness. The present study is

the first to demonstrate that the fluid-porous interface can render the system linearly unstable when the flow
in porous layer is modelled using unsteady Darcy’s law, which is otherwise stable under rigid and impermeable
conditions.
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Centrifugal Convection

Zhongzhi Yao, Mohammad S. Emran, Andrei Teimurazov, & Olga Shishkina∗†

We study Centrifugal Convection (CC) in an annular container, heated at the outer sidewall and cooled
at the inner wall, under constant vertical-axis rotation. For a container of a fixed size and a given fluid,
the strengths of centrifugal and thermal driving in such a system are characterized, respectively, by the
dimensionless Froude number Fr and Rayleigh number Ra.

The setup considered in our Direct Numerical Simulations (DNS) (Yao et al. , 2025) mimics the Annular
Centrifugal Rayleigh–Bénard Convection (ACRBC) experiments conducted in C. Sun’s lab at Tsinghua Univer-
sity (Jiang et al. , 2020, 2022), and the studied parameter range spans from 0 to 100 for Froude number and
from about 105 to 109 for Rayleigh number. As Fr increases from 0 (no rotation) to 100 (strong centrifugal
buoyancy) at a fixed value of Ra, the global flow structure and heat transport scaling transition from those
typical in vertical convection, where the temperature gradient is orthogonal to the gravitational buoyancy
force, to those typical in Rayleigh–Bénard convection, where the gradient aligns with centrifugal buoyancy.
With increasing centrifugal buoyancy, the flow first transitions from a quasi-two-dimensional (r − z) through
fully three-dimensional to another quasi-two-dimensional (r − ϕ) global flow structure, which is characterized
by reduced vertical mixing in accordance with the Taylor-Proudman theorem. To trigger the latter transition,
for higher Ra values, larger Fr values are generally required.

Although the CC system gets closer to the Rayleigh–Bénard (RB) system for large Fr and Ra, there are
still several principal differences between them. These differences are reflected in a generally higher mean
temperature in CC compared to RB (even in the fully Oberbeck–Boussinesq case), which is caused by the CC
container geometry, and by generally earlier transition to the ultimate regime (Lohse and Shishkina , 2024) in
CC, caused by the additional shear in CC due to the gravitational buoyancy. The similarities and differences
between the RB and CC systems are discussed in the talk.

Figure 1: Instantaneous flow structure obtained in the DNS for Ra = 8.88× 108, Fr = 6.53, visualised with
horizontal cross-section of the temperature field at the mid plane.
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Enhancement of heat transfer due to the
thermoelectrohydrodynamic (TEHD) force in a

cylindrical annulus under µg conditions.

Y. Sliavin∗†, M. H. Hamede†, V. Motuz†, A. Meyer‡, Ch. Egbers†,

The effect of the dielectrophoretic force on a dielectric fluid’s flow under microgravity conditions was
experimentally examined during parabolic flight campaigns. The fluid is confined in a vertically aligned, dif-
ferentially heated cylindrical annulus and is subjected to an alternating electric field (200 Hz) during repeated
22-second microgravity intervals. The combined effect of permittivity stratification due to the radial tempera-
ture gradient and of the electric field inhomogeneity due to curvature induces an artificial radial buoyancy that
is able to trigger the so-called thermoelectric instability (1). The flow field is quantitatively analyzed using
two-plane Particle Image Velocimetry (PIV), with one axial plane and two radial planes located at the top and
bottom of the cell. This multiplane arrangement offers valuable spatial information on the evolution of flow
structures during the microgravity intervals, providing a more comprehensive view compared to single-plane
measurements. In addition, a heat flux measurement system was used for the first time.

The experiments focused on the onset and saturation of the instability, examining the effects of varying
aspect ratios (Γ = 10, 15, 20) and initial flow conditions upon entering the microgravity phase (2). The results
demonstrated that breaking the initial convective cells via controlled mixing during the hypergravity phases
leads to homogenization of the fluid and accelerates the transition to instability (Figure 1). In addition, it was
shown that the effect of the top and bottom boundaries of the cell stabilizes the flow. Indeed, for the same
forcing parameters, the instability arises and saturates faster for cells with higher aspect ratios. Complementary,
heat flux measurements provided new insights into the interplay between thermal and electrical driving forces,
allowing for a comprehensive characterization of the instability and served as clear evidence of heat flux
modification.

These findings advance the understanding of thermoelectrohydrodynamic instabilities in microgravity, of-
fering valuable benchmarks for comparison with theoretical predictions and future experimental designs.
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(a) (b)

Figure 1: Perturbation amplitude for aspect ratio Γ = 20 and (a) L = 13338 and (b) L = 18155, where
L = α∆T ge(R) d3

νκ . For mixing times in hypergravity of 5s and 10s, instability reaches its saturation under the
lower electric Rayleigh number, while for 15s, saturation is delayed. For the higher electric Rayleigh number
(b), the instability reaches its saturation regardless of the mixing time length.
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Dielectrophoretic-driven convection in the spherical
shell

Y. Gaillard ∗, P.S.B. Szabo∗†, C. Egbers

Laboratory investigations of large-scale flows in planetary atmospheres and interiors are often performed
using cylindrical or spherical shell test beds that preserve the fundamental physical dynamics. AtmoFlow is one
such experiment, designed with concentric spherical shells to simulate a planetary atmosphere, where thermal
forcing is achieved through equatorial heating and polar cooling. Planetary rotation is given via shell rotation,
while an artificial gravity-like force is generated by a central electric field. To eliminate buoyancy-driven natural
convection, the experiment is scheduled to operate aboard the International Space Station (ISS) in 2026.
The artificial central force, as described by Futterer et al. (Futterer , 2008), arises from a dielectrophoretic
effect, which decreases with distance following a 1/r5 dependence. The resulting thermo-electrohydrodynamic
(TEHD) convection has been previously explored in the Geophysical Flow Simulator (GeoFlow), an ISS-based
experiment conducted from 2008 to 2017 to model geophysical flow phenomena. Building on the findings of
Futterer et al. (Futterer , 2008), the present study focuses on the AtmoFlow experiment, which incorporates
a spherical shell aspect ratio of η = 0.7 to investigate fundamental flow dynamics.

The principle of dielectrophoretic thermo-electrohydrodynamic (TEHD) convection can be described in a
non-isothermal fluid that is subjected to an electric tension, which induces an intrinsic or externally generated
inhomogeneous electric field, such as that arising from geometric curvature. The central force field driving
this phenomenon is governed by Gauss’s law and gives rise to convective flow analogous to Rayleigh-Bénard
convection. By employing the continuity, momentum, and energy equations, a forcing parameter analogous
to the Rayleigh number can be derived by

RaE =
ϵ0ϵrγeV

2
0

2ρ0νκ
, with γe = e∆T (1)

where ϵ0 is the vacuum electric permittivity, ϵr the relative electric permittivity, γe the thermoelectric parameter,
V0 the applied electric tension, ρ0 the reference density, ν the kinematic viscosity and κ the thermal diffusivity.

In this study, we expand the parameter space explored by Futterer et al. (Futterer , 2008) to investigate
the flow fields within the parameter range of the AtmoFlow experiment, covering RaE values from 1× 105 to
2×107. Three distinct flow regimes are identified: (1) a steady-state regime characterized by plume structures
forming quadratic-shaped mode-6 patterns, (2) a transient periodic regime marked by the emergence of sheet-
like structures and mode reduction, and (3) an irregular regime distinguished by structural variations and
fluctuations in mode amplitude, which form clusters that diminish as RaE increases.

Quantitative analysis based on integral values indicates that the Nusselt number (Nu) increases with both
RaE and γe. However, the kinetic energy (Ekin) does not scale linearly with the forcing, highlighting the
presence of non-linear energy dissipation. Comparisons with the findings of Moore and Weiss (Moore , 1973)
reveal similar, though not identical, trends in Nu. Steady-state simulations demonstrate good agreement with
GeoFlow results when normalized by the critical Rayleigh number. Additionally, regime transition thresholds
are broadly consistent with those reported by Futterer et al. (Futterer , 2008), with slight discrepancies
attributed to differences in the definitions of transient and irregular regimes, as well as the incorporation of a
temperature-sensitive Gauss equation in this study to account for thermal feedback effects.

The relationship between Nu and Ekin demonstrates independence from both the Prandtl number and the
aspect ratio, in line with previous observations by Futterer et al. (Futterer , 2013). This investigation provides
novel insights into the dynamics of thermoelectrohydrodynamic (TEHD) convection in spherical shells, its
heat transport mechanisms and offering valuable implications for the experimental study of geophysical flow
phenomena in small-scale laboratory experiments.
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Effective eddy viscosity profiles 

in viscoelastic Taylor-Couette flow 

A. Takano1 2, Y. Tasaka2, Y. Murai2

We developed a method termed “eddy viscosity profiler” to quantify momentum transportation in turbulent flows 

for drag reduction studies. In such flows, additives such as polymers and bubbles modulate flows by altering the 

large-scale structures, which significantly affects friction characteristics. This method aims at evaluating the inter-

scale dissipation from large-scales to smaller scales. Mean velocity profile is measured by the ultrasonic velocity 

profiler in Taylor Couette flow and substituted to the Reynolds-averaged Navier-Stokes (RANS) equation. The 

Reynolds shear stress is modeled by the eddy viscosity concept. In the derived equation, kinematic viscosity, mean 

velocity and eddy viscosity remain as unknowns. By analyzing this equation with experimentally obtained velocity 

profiles, we derive the spatial distribution of effective eddy viscosity. To validate the present method, we first 

applied it to a Newtonian fluid across three classical regimes of Taylor-Couette flow. We successfully obtained 

radial profiles of eddy viscosity which increases from the inner cylinder wall toward the bulk. Theoretical analysis 

shows that the local mean shear rate, also quantified in this method, links the local eddy viscosity to angular 

momentum Nusselt number Nuω, and our results show a good agreement with the previous reports. Notably, we 

also observed a non-monotonic dependency of the bulk-mean eddy viscosity on Reynolds number, in contrast to 

the monotonic trend of wall-shear stress or Nuω. 

As an application to non-Newtonian fluids, we demonstrated the method using a viscoelastic surfactant solution 

known for the drug reducing effects. In the experiment. Wall shear stress was measured via torque, and the 

friction coefficient was evaluated as a function of Reynolds number Rei(=riωid/ν) where ri, ωi, d and ν are the inner 

cylinder radius, inner cylinder angular velocity, gap width, and kinematic viscosity of the base fluid, respectively 

(Fig. 1). The local slope of the friction coefficient curve (inset of Fig. 1) indicates the flow transitions between three 

flow regimes at Rei≈3000, 6000 (red lines). Eddy viscosity was evaluated at Rei indicated with red circle in Figure 1. 

The bulk-mean eddy viscosity νt,mean, plotted as a function of Rei (Fig. 2) shows a stepwise decrease, which is the 

consistent trend with the torque measurement. In the presentation, we will introduce the theoretical basis of the 

method and discuss the observed decrease of eddy viscosity from the experimental data including visualization 

and rheological measurements, and theoretical insights. 

1 Corresponding author: takano.a@eis.hokudai.ac.jp 
2 Hokkaido University, Sapporo Hokkaido, Japan 

Figure 1: Friction coefficient curve measured 

from torque and its local slope (inset). 

Figure 2: Bulk-mean effective eddy viscosity 

evaluated by the present method. 
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A novel instability of gravity-driven compressible plane-

Poiseuille flow field  

N. Taniguchi1 2, Y. Fukumoto3,4 

Kagei & Nishida (2014, 2018) (KN14 in below) conducted a perturbation analysis to compressible plane 

Poiseuille flow driven by the gravity force in isentropic equation, and they found that the linear instability occurs 

in a condition of 𝑀 > 2.5, 𝑅 < 10. This instability regime is unusual considering that the critical Reynolds number 

of incompressible plane-Poiseuille flow is 5772.22 (Orszag, 1971), and the critical Reynolds number increases with 

an increase of Mach number (Malik et al., 2008). KN14 assumed the adiabatic process by ignoring the thermal 

conductivity, and KN14’s instability has yet been detected in a more realistic setting, even in a detailed study of 

linear stability analysis of compressible plane-Poiseuille flow by Deka et al. (2023). For this reason, it can be 

pointed out that the parameter ranges intensively examined in previous studies are significantly different from 

the range of instability in KN14. Indeed, as shown in below, the instability of KN14 occurs in a narrow parameter 

setting at low Reynolds number (𝑅 < 104) and small wavenumber. Thus, it is required to clarify the instability 

regime of KN14 using the linear stability analysis.  

The purpose of this study is to identify the instability of the compressible plane-Poiseuille flow field predicted 

by KN14 using linear stability analysis for the full Navier–Stokes equation and to present the physical mechanism 

of the instability.  

In this analysis, the basic equation is compressible N–S equation. Following KN14, the equation is non-

dimensionalized as  
𝜕𝑡𝜌 = −𝑢𝑗𝜕𝑗𝜌 − 𝜌𝜕𝑗𝑢𝑗, 

𝜌𝜕𝑡𝑢𝑖 = −𝜌𝑢𝑗𝜕𝑗𝑢𝑖 − 𝜕𝑖𝑝 + 𝜈𝜕𝑗𝜏𝑖𝑗 + 2𝜈𝜌, 

𝜌𝜕𝑡𝑇 = −𝜌𝑢𝑗𝜕𝑗𝑇 − (𝛾 − 1)𝜌𝑇𝜕𝑗𝑢𝑗 +
𝛾

𝑃𝑟𝑅
𝜕𝑗(𝜅𝜕𝑗𝑇) + 𝛾(𝛾 − 1)𝑀2𝜈𝜏𝑖𝑗𝜕𝑗𝑢𝑖,

where 𝜌, 𝑢𝑖, 𝑝, 𝑇, 𝜏 are density, velocity in 𝑖-th direction, pressure, temperature, and viscous stress tensor. Here, 

flow parameters are Reynolds number 𝑅(= 1/𝜈), Mach number 𝑀, Prandtl number 𝑃𝑟, and specific heat ratio 𝛾. 

For eigenvalue problem, we used the approach of Orszag (1971) with Chebyshev-Galerkin method, where we 

applied adiabatic boundary condition on the upper and lower boundary walls. The numerical scheme was 

validated by the reproducibility of inviscid modes, reported by Deka et al. (2023).  

Figure 1 shows the three-dimensional visualization of linearly unstable regime, and we present the cross-

sectional contour plot of growth rate in Fig. 2. In these figures, we observe the unstable regime (B) in addition to 

1 Corresponding author: nobutaka.taniguchi.c1@tohoku.ac.jp 
2 Tohoku University, Japan  
3 Kyusyu University, Japan 
4 Osaka Metropolitan University, Japan 

Figure 1. visualization of unstable regime at 𝛾 = 1.4, 𝑃𝑟 = 0.7.  Figure 2. Marginally stable curve at 𝑀 = 10. 
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conventional unstable regime (A) of Tollmien–Schlichting waves. The parameter regime is slightly different from 

KN14: 𝑀 > 6.0 and 2500 < 𝑅 < 106. Based on the parametric study, the instability of KN14 is clearly observed for 

flows composed of polyatomic molecules with Pr<1.5.  

Regarding the source for instability of KN14, we consider that the inviscid instability driven by the gravity term 

in the linearized N–S equation cause the instability. Figure 3 shows the comparison of eigenvalue of the most 

unstable eigenmode for isentropic compressible N–S equation. In this figure, we eliminate terms of linearized 

equation and compared the growth rate of eigenvalue: dissipation and gravity terms. From this figure, we confirm 

that the application of gravity term induces the instability in both viscous and inviscid condition. Thus, the main 

structure of KN14 instability is considered to be governed by the following second-order ordinary differential 

equation as  

𝜌′′ =
2𝑈′

𝑈 − 𝜎
𝜌′ + (𝛼2(1 − (𝑈 − 𝜎)2𝑀2) + 2𝑖𝛼𝑔)𝜌.  

Figure 3. Changes of growth rate with 𝑅 at 𝑀 = 2.5, 𝑘𝑥 = 0.2. 

     In the presentation, we will discuss the range of KN14 instability of gravity-driven compressible Navier–Stokes 

equation and the physical mechanism of instability based on the Euler equation.  
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Influence of the centrifugal force on convective flow in
a central force field

V.Travnikov∗†, C.Egbers†

The study of large-scale convective flows within a spherical gap has been the focus of numerous theoretical
and numerical investigations due to its relevance in geophysical applications, particularly in scenarios where
the inner surface is warmer than the outer surface and the fluid is subject to a radial force field. The flow
patterns that emerge in such a simplified model have been extensively analyzed by various researchers in both
non-rotating and rotating cases.

In the non-rotating case, the behavior of supercritical states can be characterized using the critical degree
of the Legendre polynomial, denoted as ℓc, as predicted by linear theory. In contrast, in the rotating case,
the flow structure is primarily determined by the Coriolis force, which introduces the corresponding critical
azimuthal wave numbers, denoted mc.

A further motivation for conducting numerical analyses of convective flow within a spherical gap arises
from the GEOFLOW experiment (Futterer (2013)), which was performed on the International Space Station
(ISS) to eliminate the influence of terrestrial gravity. In cases where the rotation rate becomes sufficiently high,
the centrifugal force significantly impacts the experiment due to temperature-dependent density variations. In
the context of this study, particular attention is paid to a detailed examination of the influence of centrifugal
force.

We present the results of numerical investigations of thermal convection within a rotating spherical gap
filled with silicon oil M5, characterized by a Prandtl number of Pr = 64.64. The radii ratio is defined as
η = Rin

Rout
= 0.5, where Rin and Rout denote the inner and outer radii, respectively. The inner surface

maintains a higher temperature than the outer surface, i.e., Tin > Tout. A radial force field is induced by
the dielectrophoretic effect Mutabazi (2016). The buoyancy force in the Navier-Stokes equation depends on
the imposed oscillating electric field and the temperature gradient according to V2

rms∆T/r5, where ∆T =
Tin−Tout, Vrms is the mean square voltage between surfaces. Hence, the convective flow can be controlled by
two parameters: ∆T and Vrms. This represents a fundamental distinction from Rayleigh-Bénard convection,
in which only ∆T is variable under terrestrial laboratory conditions. Under microgravity conditions, however,
convection can be manipulated through both ∆T and Vrms, or alternatively, through artificial gravity. In the
non-rotating case, the Rayleigh number defined as Ra = 2ϵ0ϵrγ∆T

ρνκ V2
rms, where ϵ0 is the vacuum constant, ϵr

is the permittivity, γ is the thermal permittivity coefficient, ρ is the density, ν is the kinematic viscosity, and
κ is the thermal diffusivity serves as the sole control parameter.

The situation becomes much more complex if the system rotates. Due to the equation of state ρ(T) =
ρout(1 − α(T − Tout)), where α is the volume expansion coefficient, the temperature-dependent part of the
centrifugal force can be expressed in the form of the additional buoyancy term. The key question in this study
concerns whether ∆T is constant and Vrms varies, or vice versa. In the first case, the centrifugal force can
be expressed as follows: Fc ∼ Ta, where Ta = ( 2Ωd2

ν )2 is the Taylor number, d = Rout − Rin is the width of
gap and Ω is the rotation rate. In the second case, the centrifugal force follows the relationship Fc ∼ RaTa.
A numerical investigation is conducted to analyze both cases systematically.

Initially, we examine the behavior of the steady two-dimensional basic flow. After that, a linear instability
analysis is performed to determine the critical Rayleigh number and critical frequencies of the most unstable
perturbations as functions of the Taylor number, denoted as Rac(Ta), ωc(Ta), respectively. The analysis
reveals that the critical Rayleigh number increases with the Taylor number. We found that the basic flow
becomes unstable with respect to the nonaxisymmetric perturbations. In all the cases considered, the instability
sets in as a Hopf bifurcation. Furthermore, according to the numerical analysis of the three-dimensional flow,
this bifurcation is supercritical. Heat transfer is performed in terms of the Nusselt number, which increases

∗Corresponding author: Vadim.Travnikov@b-tu.de
†Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-

Halske-Ring 15a, 03046 Cottbus, Germany
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drastically when the Rayleigh number exceeds the critical value. The amplitude of the supercritical flow follows
the relationship a ∼

√
Ra−Rac.

Numerical research is performed using the pseudospectral method developed by R. Hollerbach Hollerbach
(2000). Three-dimensional calculations have been verified using the MagIC code.
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AMOC in a box:
Heat and salinity transport in horizontal

double-diffusive convection

G. Vacca∗†, R. Yang ‡, C. Howland §, R. Verzicco †¶‖, D. Lohse †∗∗

The Atlantic Meridional Overturning Circulation (AMOC) plays a key role in regulating global climate.
Indeed, it governs the transfer of heat, salinity, and nutrients between the equator and polar regions(Buckley
and Marshall , 2016). Recently a weakening of the AMOC has been observed, which has major impact of the
climate in Europe; so a fundamental understanding of the AMOC dynamics is crucial.
The present study investigates the effect of the density ratio on the double-diffusive convection (DDC) flow
in the presence of horizontal temperature and salinity gradients, extending the results of Li and Yang (Li
and Yang , 2021). To this aim a series of 2D and 3D direct numerical simulations has been performed. The
considered configuration (Figure 1 top) has been inspired by several studies of horizontal convection (Shishkina
, 2017). By varying the temperature Rayleigh number RaT and the density ratio Λ, which represents the ratio
of the buoyancy forces generated by the two active scalars on the flow field, four distinct regimes are found.
These regimes are distinguished by the global response parameters of the system, namely the temperature
Nusselt number NuT , the salinity Nusselt number NuS (Figure 2) and the friction Reynolds number Reτ ,
as well as by the flow field structures. The two limiting regimes of horizontal convection (HC), at high and
low Λ values, follow the scaling of the extended Grossmann-Lohse theory for horizontal convention(Shishkina
et al. , 2016). In the other regimes, in which the competition between the buoyancy forces occurs, a clear
thermohaline layering (Figure 1 bottom) and the presence of oscillating convected salt fingers are found.
Our numerical investigation sheds light on the dynamics that emerge in horizontal double-diffusive convection
phenomena as the density ratio varies. Although the considered system is very simplified, it may contribute
to understand the dynamics of large-scale problems such as oceanic currents and the possible effects of the
climate change on these systems.
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Figure 1: Sketch of the set up with bound-
ary conditions on the upper plate. In red the
hot and salty (T+, S+) plate and in blue the
cool and fresh (T−, S−) plate (top). Instan-
taneous salinity field for the layering regime
(bottom).

Figure 2: Density ratio dependence of the salinity Nus-
selt number. The colours highlight different regimes:
blue represents temperature-driven HC, red oscillating
regime, yellow layering regime, and green salinity-driven
HC.
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Scattering of internal waves by turbulence

J. Vanneste∗†, H. A. Kafiabad‡, M. R. Cox†,‡

Atmospheric and oceanic internal waves propagate in a turbulent flow with which they interact strongly. The
advection and refraction of the waves by the flow leads to a scattering process that redistributes wave energy
in both physical and spectral space. This scattering can be described by an asymptotic theory which models
the turbulent flow as a homogeneous random process and assumes that the typical group speed of the waves is
much larger than the typical flow speed. With these assumptions, we obtain a kinetic equation governing the
evolution of the wave action a(x,k, t) in position–wavector (x,k)-space (Savva et al., 2021). The scattering is
captured by an integral (collision) term which reduces to a simple wavenumber diffusion under the additional
(WKB) assumption of wavelengths much shorter than the flow scale (Kafiabad et al., 2019). We analyse
the kinetic model and its WKB limit and tests its predictions against numerical simulations of the rotating
Boussinesq equations. We consider two aspects in details: (i) the impact of the time dependence of the flow
on the frequency distribution of the waves (Cox et al., 2023), and (ii) the role played by flow-induced density
fluctuations in the scattering (Cox et al., 2025).
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Experimental study of the linear instability of the 

featureless turbulent flow  

Arthur Viallefont1 , Grégoire Lemoult1, Arnaud Prigent1 

In Taylor-Couette flow (TCF), the transition to turbulence can take different forms. When the 
cylinders rotate in opposite directions, the transition is characterized by the emergence of the 
intermittency (INT) and the spiral turbulence (SPT) regimes, two laminar-turbulent coexistence 
regimes, in which regions of laminar and fully turbulent flow coexist. Spiral turbulence, a 
turbulent helix within laminar flow produces a periodic pattern in space and time whereas the INT 
regime, turbulent spots surrounded by laminar flow, is spatio-temporally intermittent.  These 
regimes have been studied since the 1960s [1-3] and have been reproduced numerically using 
direct numerical simulations (DNS) since 2009 [4-5]. They are not unique to TCF but are a 
characteristic feature of the transition to turbulence in wall-bounded shear flows. For example, in 
plane Couette flow (PCF), inclined stripes form at an angle of about 30°, and their number 
increases with the Reynolds number (Re) until the flow becomes fully turbulent [5-6]. In Poiseuille 
flow, the laminar-turbulent coexistence takes the form of turbulent puffs within a laminar flow. 
These puffs drift along the pipe and exhibit dynamic behaviors such as splitting and merging, 
which depend on the Reynolds number. It has been shown that these dynamics can be fully 
reproduced using a one-dimensional discrete model, where the turbulence is understood as a 
chaotic repeller [8]. 
Recently, it has been shown that the transition from laminar to the INT regime is well described 
within the domain of out-of-equilibrium critical phenomena. It is now considered as a continuous 
transition belonging to the directed percolation class [9]. The transition from the SPT regime to 
the homogeneous turbulence has traditionally been studied starting from the fully turbulent state. 
It has been shown that this regime can be understood as a long-wavelength instability of the 
turbulent flow [10]. More recently, Kashyap et al [11-12] have investigated the linear stability of 
turbulent plane channel flow. Their numerical studies provide evidence that the coexistence of 
laminar and turbulent regions indeed results from a linear instability of the fully turbulent regime. 
However, this result has not yet been confirmed by theoretical studies. Moreover, experimental 
studies are still lacking to conclusively characterize the nature of this transition. The primary 
objective of our work is to verify whether these coexistence regimes arise from a linear instability 
of the turbulent flow. We conducted our study using a double-axis rheometer with a Couette 
geometry characterized by a radius ratio of η=0.977 and an aspect ratio of Γ=132. Taking advantage 

of this configuration, we explored the state diagram (based on Andereck’s diagram) while 
simultaneously measuring the torque. This allowed us to introduce a new order parameter based 
on torque measurements and to study its variation as a function of the system control parameters. 
We found that its variation behaves as a supercritical transition. Additionally, we present the 
results of the linear stability analysis of the flow by performing quenches from the turbulent state. 
We measured the growth rates of the modes associated with the observed patterns by visualizing 
the flow over a 360° view. 

1 LOMC, Université Le Havre Normandie-CNRS 
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The fluid dynamics of intrusions

H. Vu ∗, A. Slim †

We shall describe intrusions generated by a source into a linearly stratified ambient layer at the level of
neutral buoyancy. Our analysis focuses on simulations of the Navier-Stokes equations under the Boussinesq
approximation. We find that for a wide, lazy source, the intrusion profiles exhibit a remarkably clear self-similar
collapse, although they do not match the solutions of existing shallow-water models. In contrast, we found
that for a narrow, jet-like source, the intrusion profiles display a number of interesting features, including the
formation of a vortex ring, varicose waves on the trailing jet, followed by the growth of sinusoidal instabilities
and a transition to turbulence. The varicose waves generated differ from those of a pure jet in an unstratified
ambient, but the sinuous modes are similar. To analyse this phenomenon, we conduct a stability analysis to
understand how these instabilities are generated. This analysis will enhance our understanding of the nature
of the waves and the role of stratification on the intrusion profiles.
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Observation of nonaxisymmetric standard magneto- 

rotational instability induced by a free-shear layer 

Yin Wang1*, Fatima Ebrahimi1,2, Hongke Lu3, Jeremy Goodman2, Erik Gilson1, Hantao Ji1,2 

The standard magnetorotational instability (SMRI) with a magnetic field component parallel to the rotation axis is 

widely believed to be responsible for the fast accretion in astronomical disks.  It is a linear instability triggered in 

the differentially rotating ionized disk flow by a magnetic field component parallel to the rotation axis. In 

conventional base flows with a Keplerian profile or an ideal Couette profile, most studies focus on axisymmetric 

SMRI, since excitation of nonaxisymmetric SMRI in such flows requires a magnetic Reynolds number Rm more 

than an order of magnitude larger. Here, we report that in a magnetized Taylor-Couette flow, nonaxisymmetric 

SMRI with an azimuthal mode number m=1 can be triggered by a free-shear layer in the base flow at Rm≳1 (Fig. 

1), the same threshold as for axisymmetric SMRI[1]. Global linear analysis reveals that the free-shear layer reduces 

the required Rm, possibly by introducing an extremum in the vorticity of the base flow. Nonlinear simulations 

validate the results from linear analysis and confirm that a novel instability recently discovered experimentally is 

the nonaxisymmetric m=1 SMRI[2]. Our finding has astronomical implications as free-shear layers are ubiquitous 

in celestial systems, such as the disk-star boundary layer, the solar tachocline, and the edge of planet-opened 

gaps in protoplanetary disks. 

Figure 1: Dimensionless growth rate of the m=1 SMRI as a function of magnetic Reynolds number (Rm) and 

applied magnetic field strength (B₀). 
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Self-sustained process in Couette-Poiseuille flow 
T. Liu1, M. Etchevest2, B. Semin1, P. Dimitruk2, R. Godoy-Diana1, J. E.Wesfreid1,3

Streamwise coherent vortices are well characterized as cellular structures that organize the flow 
in hydrodynamic instabilities such as Taylor-Couette, Dean, and Görtler flows. These structures 
arise as a consequence of linear centrifugal instability, and their nonlinear evolution typically 
corresponds to supercritical instabilities. 
However, similar flow organization with longitudinal structures (aligned with the main or base 
flow direction x) is also observed in wall-bounded shear flows that have velocity gradients in the 
transverse y direction.  
In these flows, the organization originates from a mechanism known as the lift-up process, where 
streamwise vorticity ("rolls") producing velocity fluctuations uy generates high and low-speed 
modulations of the base flow U(y), referred to streaks. This flow organization is a hallmark of the 
transition to turbulence in such flows, including plane Couette flow, Poiseuille flow in channels 
and pipes, and combinations such as Couette-Poiseuille flow. Most of these flows are linearly 
stable, and the transition to turbulence occurs via subcritical instabilities. 

Our interest lies in the case where turbulence dynamics in these flows is governed by the 
nonlinear interaction between streaks and rolls, described by a self-sustaining process (SSP), 
initially modeled by Waleffe [1]. We investigate the dynamics of this process using a 
combination of experiments and numerical simulations. 

The experiments are conducted in a plane Couette-Poiseuille channel, where streaks and rolls are 
quantified through the streamwise velocity fluctuation ux and transverse velocity uy respectively, 
measured using stereo-Particle Image Velocimetry (PIV). In parallel, Direct Numerical 
Simulations (DNS) of Couette-Poiseuille flow are performed using a pseudospectral code that 
employs the Fourier continuation method in the non-periodic direction, referred to as SPECTER 
[2]. 

Our focus is on the instability induced by streak waviness, which is a critical component of the 
SSP and has been extensively studied theoretically and numerically. However, experimental 
measurements of streak waviness remain rare. To analyze the transition of streaks from a straight 
to a wavy state, we apply a spatial filter that separates the straight and wavy components of the 
streak velocity [3].  
A similar decomposition is also obtained from the DNS results (see figure). In both cases, we 
observe the relationship between the straight part of the streaks and the rolls—consistent with the 
laminar lift-up effect. 

1 Laboratoire PMMH, CNRS, ESPCI, Sorbone Université, Université Paris Cité, 7 quai Saint-Bernard, 75005 Paris (France), 
2 Universidad de Buenos Aires, FCEyN, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires (Argentina) 
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We introduce a new variable, ⟨|ωy,wavy|⟩, to quantify the waviness of the streaks. We then 

demonstrate that the average absolute value of the wall-normal velocity increases with |ωy,wavy| 
in agreement with SSP theory.  

This new SSP analysis approach is not specific to Couette-Poiseuille flow and can be applied to 
study similar mechanisms in other flow configurations. 
Finally, we recall that the origin of wavy instabilities in Taylor-Couette flows was also a 
consequence of the SSP, although applied to structures formed from linear instabilities rather 
than subcritical ones [4] [5]. 

Figure 1: In the upper panels, the streamwise velocity field (left) and its decomposition into the straight part 
(middle) and wavy part (right) are displayed.  
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Oblique modes & spatio-temporal linear stability of
plane Couette flow

K. V. Wilhelm∗†‡, J. Conrad†‡, S. Görtz†‡, M. Oberlack†‡, Y. Wang†

Plane Couette flow is known to be linearly stable at all Reynolds numbers for temporally evolving modes.
Nevertheless, both experiments and DNS show transitial behavior and oblique laminar-turbulent structures at
moderate Reynolds numbers. This research seeks to bridge this discrepancy by analyzing the linear stability of
spatio-temporally evolving modes in plane Couette flow using Briggs’ method.

Squire’s theorem extended:

In linear stability theory, the Orr-Sommerfeld equation (OSE) governs the evolution of the amplitude ṽ of
a wall-normal perturbation in parallel shear flows as[

(−iω + iαU)

(
d2

dy2
− (α2 + β2)

)
− iαU ′′ − 1

Re

(
d2

dy2
− (α2 + β2)

)2
]
ṽ = 0, (1)

where the normal mode approach v′(t, x, y, z) = ṽ(y)exp[i(αx + βz − ωt)] has been employed to the wall-
normal perturbation v′, with wave frequency ω and streamwise and spanwise wave numbers α and β, and
where U = U(y) describes the laminar base flow and Re is the Reynolds number.

The key idea of Squire was that the OSE has a similar structure in 2D and 3D (Squire, 1933). This
structural similarity means that the OSE has the same solution space in 2D and 3D, and allows an equiva-
lence transformation between 2D and 3D perturbation modes. Introducing respective indices for 2D and 3D
quantities and with the Reynolds number ratio ϕ := Re3D/Re2D, the following relationships

Re3D = ϕRe2D, α3D = α2D/ϕ, ω3D = ω2D/ϕ, β = ±
√

1− 1/ϕ2α2D, (2)

can be derived.
In Squire’s original analysis, he investigated temporally evolving modes, i.e. parameters in the number

spaces ω ∈ C, α, β ∈ R (Squire, 1933). He noticed that this parameter choice implies ϕ > 1 to keep β ∈ R
in (2), and thus he concluded Re2D < Re3D. If there is a 2D perturbation associated with a critical (2D)
Reynolds number, the corresponding 3D perturbation will be at a higher (3D) Reynolds number.

When extending this to spatio-temporally evolving modes, ω, α, β ∈ C, the equivalence transformation
remains formally identical to (2), however, since complex roots of (2) are now admissible, the transformation
admits two branches for β as

β =

{
±
√
1− 1/ϕ2(α2D,r + iα2D,i) for ϕ > 1,

±
√
1/ϕ2 − 1(α2D,i − iα2D,r) for ϕ < 1.

(3)

Key results are: (i) critical Reynolds numbers may be smaller in 3D than in 2D for ϕ < 1, i.e. if there is
a 2D perturbation associated with a critical (2D) Reynolds number, the corresponding 3D perturbation may
occur at a smaller, subcritical (3D) Reynolds number, and therefore, 3D modes may be spatio-temporally more
unstable; (ii) the complex β gives rise to structures that can grow obliquely to the streamwise direction; (iii)
the ±-sign for β constitutes a symmetry breaking in the z-direction; (iv) the box width controls the critical
3D Reynolds number, since the box width limits the largest conceivable spanwise wavelength related to the
wave number βr, corresponding to a given growth factor α2D,i by (3).
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Oblique structures in plane Couette flow:

In the previous section, a 3D linear instability mechanism was presented. The idea for this was to some
extent triggered by the experimental observation that transitional plane Couette flow forms oblique structures,
i.e. at an angle in the plane of streamwise and spanwise directions.

In plane Couette flow, oblique stripes consisting of alternating turbulent and laminar regions were observed
by Prigent et al. (2003) using Kalliroscope flakes in a moving belt channel apparatus. Similarly, numerical
simulations by Barkley & Tuckerman (2005) also demonstrated the emergence of oblique patterns in transi-
tional plane Couette flow. By employing a tilted computational domain aligned with the oblique structures,
they were able to impose periodic boundary conditions, allowing these patterns to be sustained across a range
of tilt angles and domain sizes.

Briggs’ method:

Strictly speaking, the growth of individual spatial or spatio-temporal modes is unphysical, as perturbations
become infinite in the domain due to the imaginary part of the wave numbers in positive or negative direction.
Therefore, the perturbation energy is not meaningfully defined. An elegant resolution to this issue was intro-
duced by Briggs (1964), originally developed in the context of wave propagation in plasma physics. Rather
than considering individual modes, Briggs’ approach solves an initial value problem based on a disturbance
localized in both space and time over a whole distribution of frequencies and wave numbers

v′(t, x, y; y0) =
1

2π

∫
F
v̂(t, α, y; y0)e

iαx dα, v̂(t, α, y; y0) =
1

2π

∫
L
ṽ(ω, α, y; y0)e

−iωt dω. (4)

The temporal integration contour L has to lie above the highest singularity of ṽ, i.e. zeros of the dispersion
relation, in order to fulfill causality. The spatial integration contour F is initially along the real line. The
integration contours produce trajectories of singularities in the respective other complex planes, i.e. a trajectory
of ω-singularities ω(F) caused by the spatial integration contour F and trajectories of α-singularities αl(L),
αu(L) caused by the temporal integration contour L. These are exactly the temporal and spatial eigenvalues
of the problem for a given α on F and a given ω on L. The contours are closed in the complex planes by
semicircles above and below the contours using Jordan’s lemma, and are evaluated via the residuum theorem.

In Briggs’ method, the integration contours are now continuously deformed, changing also the trajectories
of singularities in the other respective complex planes. As long as all singularities stay in their original relative
position, i.e. above or below the integration contours, the deformation is valid. The time-asymptotic behavior
of the initial-value problem can be approximated using the method of steepest descent: when the integration
contours pass through a saddle point, the contours cannot be lowered, since two singularities from different
sides of the integration contour F merge. Perturbation modes with zero group velocity determine absolute or
convective instability, whether the saddle point lies above or below the real ω-axis.

We propose an algorithm for the deformation of the integration contours: a potential function is assigned
to each point on the integration contours as a measure of distance to the trajectories of singularities. The
integration contours are moved in order to minimize the potential at every point, while the integration contours
L is forced downwards and curvature terms ensure a smooth contour.

For plane Couette flow, since there are no unstable temporal eigenvalues in the first place, absolute
instabilities are not possible. However, convective instabilities or instabilities due to a time-periodic forcing
are conceivable.
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Axially-aligned vortices in unsteady Taylor�Couette

�ow

A.P.Willis*�, M. J. Burin�

It is 60 years since Donald Coles' (1965) landmark paper on �Transition in circular Couette �ow�. Towards
the end of the work, there featured a surprising image, where structures in the �ow were aligned with the axis,
rather than wrapping around the cylinder, perpendicular to the usual manner of Taylor-vortex rolls, wavy rolls,
and so on. Whilst the instability was observed upon a start-stop motion of the outer cylinder, confusingly,
Coles only referred to this image when speculating that Tollmein instability was involved in his sudden-stop
process for generating a multiplicity of wavy Taylor-vortex states.

At the last ICTW meeting in Barcelona, I presented a numerical study that isolated the instability, guided
by Michael's more recent experimental observation of the instability following a start-stop of the outer cylinder
(Figure 1). It was suggested that the instability be more likely related that of Stokes' oscillating boundary layer
problem. In this presentation, we provide further evidence for this link, and examine why the instability has
remained so elusive over the last 60 years. There are a number of factors contributing to this, but, now that
PIV techniques are more prevalent, the instability is likely to be detected more frequently in future experiments.

Figure 1: Instability following start-stop motion of the outer cylinder, observed (left) by Coles (1965) and
(right) in the apparatus of Burin & Czarnocki (2012).
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Mutiple states and aspect ratios of rolls: An analogy
between Taylor–Couette and Rayleigh–Bénard flows

Xiaojue Zhu∗†

In turbulent Taylor–Couette (TC) flow, multiple statistically stationary states can emerge, each defined
by a distinct aspect ratio (Γr) of Taylor vortices and associated with different transport properties. Using
direct numerical simulations, we explore this multiplicity in axisymmetric TC flow with a large vertical extent,
focusing on a radius ratio of η = 0.714 (where ηi and ηo are the inner and outer cylinder radii, respectively).
For Taylor numbers Ta > 1010, we observe a range of vortex aspect ratios, 2/3 ≤ Γr ≤ 4/3, indicating the
coexistence of multiple roll states in the turbulent regime. This behavior mirrors that seen in two-dimensional
Rayleigh–Bénard (RB) convection (Wang et al., Phys. Rev. Lett., 125, 2020), where roll aspect ratios similarly
vary across stable states. We attribute this correspondence to the elliptical deformation and viscous damping
of vortices, reinforcing a deep analogy between TC and RB flows—two canonical systems of thermal and
rotationally driven turbulence.

Figure 1: Multiple states arise in axisymmetric Taylor–Couette flow under identical initial conditions

∗Corresponding author: zhux@mps.mpg.de
†Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
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